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Abstract—To minimize substantial energy and transmission
latency cost caused by the von Neumann bottleneck, a novel
computing-in-memory (CIM) architecture utilizing a single-ended
6T 4-kb SRAM in 16-nm 1P11M FinFET process is proposed
in this paper. The use of the single-ended 6T SRAM is the
CIM’s defining feature; the path directly connecting from the
complement bitline (BLB) to Q was removed. By altering the
value of Qb, write operations of 0 or 1 could be performed.
Then, employing ultra-low threshold voltage (ULVT) transistors
in the 2T Switch eliminates the need of a current compensation
circuit and its corresponding coupled capacitor used in avoiding
charge-sharing problems. Moreover, employing ULVT devices in
the Control Circuits for both SRAM core array and CIM core
minimizes the delay in these circuits due to the Vth drop in the
16-nm technology node with ultra-low supply voltage. This CIM
enables the performance of operations such as addition, signed
multiplication, and Boolean logical functions which are neces-
sary for convolutional neural networks (CNN). At a maximum
frequency of 1 GHz, it achieves an energy efficiency of 266.7
TOPS/W and area efficiency of 470.588 GOPS/mm2 as evidenced
by post-layout simulation results.

Index Terms—computing-in-memory (CIM), convolution, Fin-
FET, SRAM, von Neumann bottleneck.

I. INTRODUCTION

Traditional AI and neural network applications used the

von Neumann architecture, which mainly included mem-

ory and an arithmetic logic unit (ALU) for computations.

However, the von Neumann bottleneck persists due to data

transmission between memory and ALU, limiting timing,

throughput, and energy efficiency. Several researchers have

investigated computing-in-memory (CIM) architectures [1],

[2] to overcome these limitations by performing calculations

directly in the memory array. Unlike conventional systems,

CIM eliminates data transfer between memory arrays and

1The two principal authors made an equal contribution to this study.
⋆This research utilized an EDA tool provided by TSRI (Taiwan Semicon-

ductor Research Institute). Funding for this project was extended by the NSTC
(National Science and Technology Council) of Taiwan through specified grant
numbers, NSTC 110-2221-E-110-063-MY2 and 112-2221-E-110-063-MY3.

processors. Instead, data are retrieved from memory, modified,

and stored, requiring dedicated circuitry for supplementary

operations and seamless switching between calculation sources

and destinations.

SRAMs are preferred over DRAMs in CIM devices for

their faster bit-wise logical operations and data read speed,

improving reliability for AI applications [1], [2]. However,

SRAMs’ higher power consumption and larger size are draw-

backs. Resolving these issues led to innovative designs, such

as the 4T load-less SRAM [3]. A disturb-free, single-ended

(S.E.) 6T SRAM was introduced to implement Boolean logic

and addition operations [4]. AI applications and convolution

calculations require handling both negative and positive values

for 1 and 0, especially during simultaneous addition and

multiplication operations. Finally, a previous SRAM-based

CIM was implemented in 40-nm CMOS technology [5], [6].

Its ripple carry adder (RCA) and multiplier (RCAM) block

was carried out utilizing a disturb-free, S.E. 7T 1-kb SRAM.

This implementation employed the full swing-gate diffusion

input (FS-GDI) method, which offers reduced chip area cost,

low power consumption, and full voltage swing resolution.

However, it has a low energy efficiency and area efficiency at

7.66 TOPS/W and 27 GOPS/mm2, respectively. To improve

the prior CIM’s energy and area efficiency, several of its

blocks’ circuits are modified and implemented using 16-nm

FinFET CMOS process. To achieve an 8-bit input and 8-

bit weight CIM, a 4-kb SRAM array is implemented in this

regard.

II. SYSTEM ARCHITECTURE OF THE PROPOSED CIM

The CIM architecture presented in this study, shown in

Fig. 1(a), showcases a single-ended 6T SRAM-based design.

Notably, commonly used circuits from previous researches

are omitted for discussion in this paper [6]. The unique

contributions of this research are elaborated in the subsequent

sections.
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Fig. 1. (a) Block diagram of the proposed CIM; (b) Proposed single-ended 6T SRAM

A. Design of the Proposed CIM

The previous paper illustrates a 4×4 array prototype de-

signed to showcase their CIM [6]. In our design, capacitors

coupled to pre-charge circuits are removed as they are deemed

unnecessary. The CIM’s process for performing addition and

multiplication is stated as follows:

1) A 2T Switch acts as a monitor to identify the rows

to be used as operands for the addition operation. Any

two rows within the array can be chosen as operands.

Previously, a current compensation circuit was added

to the 2T Switch to resolve charge-sharing problems in

their CIM [6]. However, it is not needed in our proposed

design since ULVTs (Vth = 0.1 to 0.2 V) are used instead

of SVTs (standard Vth transistors).

2) CBi, CNORi, and CANDi, where i ranges from 0 to 3,

are generated and serve as inputs linked to the respective

Ripple Carry Adder and Multiplier (RCAM) unit at the

base of each column.

3) The RCAM block performs the multiplication and addi-

tion operations using the provided inputs.

4) A multiplexer (MUX) takes supervision of writing back

the product or sum to a designated memory address,

contingent upon the reception of respective selection

signals.

B. 6T SRAM unit

Referring to Fig. 1(b), a specific memory cell is selected

through external input of 6-bit address signals and 6-bit data

signals, decoded by row and column decoders. During read

or write operations, control is managed through signals WA,

WL, and WLO, which activate MN2 and MN3 or MP3,

respectively, initiating the pre-discharge (preD). In read or

write actions, a pre-discharge is applied to the complement

bitline (BLBx) to prevent data ’0’ from being affected by

TABLE I
READ/WRITE OPERATION MODES OF THE 6T SRAM CELL

Modes Read 1/0 Write 1 Write 0 Hold

preD 0 1 1 1

WA 1 1 1 0

WLO 1 1 0 1

BL 1/0 1 1 1

BLB 0/1 0 0 0

WL 1 1 0 0

relying on subthreshold current. When a memory cell is not

selected, preD is set to high, grounding the BLBx, preventing

leakage current from the SRAM cell and any adverse effects

on the BLBx, thus avoiding additional power consumption.

• Read 1 or 0: WLO is set to high, which turns off MP3.

Simultaneously, WA is set to high, activating MN2, and

WL is set to high, activating MN3. The voltage stored in

QB is read onto the bitline (BLx) through MN2 and MN3,

along with the inverter driven by a large-width buffer on

the BLBx.

• Write 0: WA is set to high, turning on MN2. PreD, WL,

and WLO are set to low, turning off MN3 and activating

MP3. This configuration sets QB to high, enabling MN1.

Q discharges to low due to the activation of MN1.

• Write 1: PreD is kept to high switching MN3 on and

pulling BLB to GND. WA is set to high, turning on MN2.

Both WL and WLO are set to high, turning on MN3

and turning off MP3. This arrangement sets QB to low,

enabling MP1. Q charges to high as a result.

The operations described above are summarized in Table I.

C. CIM Control Circuit

As shown in Fig. 2, CIM Control Circuit comprises the

CIM Timing Control Circuit and the Address Selecting Control
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Circuit. Its primary function is to generate corresponding op-

eration control signals and the addresses for the operations we

intend to perform. When either the CIM or MUL signal is high,

it indicates the need to commence an operation. The OP signal

is then pulled to high, initiating the output of relevant operation

control signals by the operation timing control circuit. If the

CIM signal is logic 1, it triggers the address selection control

circuit to select the corresponding addend and addend address

data, allowing the memory to automatically perform addition

at the specified operation addresses starting from BL0 and

continuing sequentially until the CIM signal is deactivated.
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Fig. 2. CIM Control Circuit.

The address selection control circuit selects the multipli-

cand, multiplier, and sign bits of the multiplicand and multi-

plier address data when the MUL is high. Starting at BL0 and

consecutively until the MUL signal is deactivated, the memory

automatically performs multiplication at the given operation

addresses.

An example of the addition control waveform is shown

in Fig. 3. When CIM is logic 1, the Prec signal undergoes

pre-charging, and subsequently, the S signal chosen by the

Carry addr address begins the operation. Dffwr represents the

waveform of wr en sampled by CLK, indicating the read/write

interval. When Dffwr is high, it indicates writing, otherwise,

it signifies reading.

D. Auto-Switch Write Back Circuit

Write back is crucial for mathematical operations like ad-

dition (ADD) and multiplication (MUL). The sum or product

goes to the chosen address. According to Fig. 4, there are

three separate blocks. The green block indicates the bit line

(BL) auto-switching circuit. Data selection is handled by the

second block (in blue) when the OP is high. The addition

operation will use CIM Data as the carry and sum. When

MUL is initiated, product selection and output of the product
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:Compute
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Fig. 3. Timing sequence of additions.

will be performed. Write back begins with BL0 and moves to

MSB. As shown in Fig. 4, when OP is 1, the automatic write-

back circuit stores computed results from BL0 into designated

storage units for addition (Carry and Sum) or multiplication

(Product and Signproduct). The ripple-carry addition requires

WL (Word Line) switching between carry addr and sum addr

performed by the third block (in orange) to store data at

separate addresses during computation.
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III. SIMULATION RESULTS

The proposed CIM was designed using TSMC 16-nm

1P11M FinFET process. Its layout and floorplan are shown

in Fig. 5. Its core and chip area are 0.35×0.485 mm2 and

0.995×1.02 mm2, respectively.

Fig. 6 and 7 shows the post-layout simulations of the

proposed CIM’s addition and multiplication operations, re-

spectively. For example, at inputs X = 1110 1010 and Y =

1011 1100, we have Sum = 1010 0110 when the addition is

performed. For bit-by-bit signed multiplication, when input

X = 1110 1010 with its respective sign per bit, signX =

1010 1010, and weight Y = 1011 1100 with its respective sign

per bit, signY = 1010 1010, we have Product = 1010 1000

and Sign = 0000 0000.

Our proposed CIM’s throughput is 16

0.2×10−9 = 80 GOPS

= 0.08 TOPS, where the typical processing element cell’s

precharge value for multiplication and addition operations is

0.2× 10
−9 s/operation. In the RCAM, each set consists of 8

input bits, and there are two operations. Therefore, a total of
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TABLE II
PERFORMANCE COMPARISON OF SRAM-BASED CIMS

ISSCC ISSCC/JSSC ISSCC/JSSC ISSCC TVLSI JSSC ISCAS This
[7] [8]/ [9] [10]/ [11] [12] [6] [13] [14] work

Year 2018 2019 2020 2020 2021 2021 2022 2023

Process (nm) 65 55 28 7 40 28 28 16 (1P11M)

Verification Meas. Meas. Meas. Meas. Meas. Meas. Meas. Sim.

Supply Voltage (V) 1.0 1.0 0.85-1.0 0.65-1 0.9 1.2 0.9 0.8

SRAM Cell 6T Twin 8T 6T 8T 7T (S.E.) 6T 6T + LMU 6T (S.E.)

Input Bits 8 4 8 4 4 4 8 8

Weight Bits 8 5 8 4 4 2 8 8

Array Size (kb) 128 3.8 64 4 1 65.536 64 4

Model SVM CNN CNN - CNN CNN CNN CNN

Energy Efficiency
3.125 18.37 7.6 262.3-610.5 7.66 49.4 42.1 266.7

(TOPS/W)

Bitwise Energy Efficiency1
200 367.4 486.4 9768 122.56 319.2 2694.4 17068.8

(TOPS·bits2/W)

Area Efficiency
N.A. 451.83 N.A. 116375 27 3400 61.337 470.588

(GOPS/mm2)

Bitwise Area Efficiency2
N.A. 9.0366 N.A. 1862 0.432 27.2 3.9256 30.118

(TOPS·bits2/mm2)
1Bitwise Energy Efficiency = Energy Efficiency× Input Bits × Weight Bits , 2Bitwise Area Efficiency = Area efficiency× Input Bits × Weight Bits
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16 sets are involved in parallel calculations simultaneously.

Our CIM’s energy efficiency is 266.67 TOPS/W. The area

efficiency, expressed as the ratio of throughput to core area,

is 470.588 GOPS/mm2.

Table II shows the performance comparison of recent

SRAM-based CIMs. Notably, our CIM has better energy

efficiency among others except Ref. [12] which is fabricated

using 7-nm process. However, when bitwise energy efficiency

is considered, our CIM is the best, since its input and weight

bitwidth is 8 bits unlike Ref. [12]’s which only has 4-bit width.

IV. CONCLUSION

A 266.7 TOPS/W CIM is designed using 16-nm FinFET

process. It utilizes a novel single-ended 6T SRAM operating

at 1 GHz clock frequency. It has the best bitwise energy

efficiency among all CIMs. Fabrication and measurement of

the CIM in silicon will be our future work.
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