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Abstract—This paper presents an AUV with Al (artificial
intelligence), which is able to perform real-time optical vision-
based diver-following and forward looking altimeter-based
obstacle avoidance. The AI AUV is equipped with thrusters and
a standard navigation-related sensor suite. A diver detection
convolutional neural network, a suite of motion controllers, and
a diver detection payload device are developed to enable diver-
following functionality of the AUV. An obstacle avoidance
algorithm based on forward looking altimeters is developed to
enhance the waypoint navigation security of the AUV with
obstacle avoidance functionality. The diver-following and the
obstacle avoidance capabilities of the Taiwan Moonshot AUV
under different scenarios are evaluated through hardware-in-
the-loop simulations. In addition, the designated single diver
following capability of the Taiwan Moonshot AUV is also
verified through closed water experiments conducted in a
towing tank.

Keywords—Artificial Intelligence; Autonomous Underwater
Vehicle; Diver-following; Obstacle Avoidance.

L. INTRODUCTION

A team of human divers and AUVs usually cooperate to
carry out certain underwater missions, such as the inspection
of ship hulls and submarine pipelines, the study of marine
species migration, search and rescue, and surveillance. The
divers typically lead the tasks and interact with the AUV that
follow the divers at certain stages of a mission [1]. In these
applications, it is important that an AUV is able to follow and
interact with a human diver. The diver-in-the-loop guidance
reduces operational overhead by eliminating the need of
teleoperation or complex mission planning of an AUV [2].

Based on the qualitative comparisons among some
representative diver-following AUVs over the past decade [2],
AUVs that have the best diver-following performance are
classified into two types, including the one with an optical
camera [1] and the other with an active sonar [3]. In order to
have an eco-friendly underwater operation that is not intrusive
and disruptive to the ecosystem, passive sensors without
emitting energy, such as optical cameras, are preferred over
active sensors. On the other hand, active sonars are useful for
diver-following applications in unfavorable visual conditions
[3]. Compared with sonar devices, the main limitation of
optical cameras is their short underwater visibility range.
However, optical cameras have the advantages of high
resolution, high frame rate, low cost, and high application
popularity.
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This research is focused on the development of an Al
(artificial intelligence) AUV, the Taiwan Moonshot AUV,
which enables optical vision-based diver-following and
forward looking altimeter-based obstacle avoidance
capabilities. The Taiwan Moonshot AUV, developed by the
Institute of Undersea Technology (IUT) at the National Sun
Yat-sen University (NSYSU), is equipped with horizontal and
vertical thrusters and a standard sensor suite including an
altimeter with a depth sensor, a Doppler velocity logger, a
gyrocompass, and an underwater acoustic modem.

A diver-following control system consisting of three main
components, including a diver detection convolutional neural
network (CNN), a detection strategy planner, and a suite of
motion controllers, is developed. A diver detection unit
consisting of a single board computer and a webcam module
is developed and installed on the Taiwan Moonshot AUV as a
payload device. The diver detection CNN and the detection
strategy planner are executed on the single board computer of
the diver detection unit. In addition, an obstacle avoidance
algorithm based on two forward looking altimeters is
developed and integrated with the waypoint navigation
algorithm previously developed for the Taiwan Moonshot
AUYV. Two altimeters will be installed on the front side of the
AUV, facing forward, as payload devices to obtain the
distance readings between the AUV and obstacles.

The diver-following capability as well as the waypoint
navigation with obstacle avoidance capability of the Taiwan
Moonshot AUV under different scenarios are evaluated
through hardware-in-the-loop (HIL) simulations. In addition,
the designated single diver following capability of the Taiwan
Moonshot AUV is also verified through closed water
experiments conducted in a towing tank.

II.  OPTICAL VISION-BASED DIVER-FOLLOWING

This section presents the diver detection CNN, the motion
controllers, and the diver detection unit, which are the main
components enabling the optical vision-based diver-following
capability of the Taiwan Moonshot AUV.

A. Diver Detection CNN

This research adopts a light weight CNN called Tiny-
YOLOV3 [4] as the diver detection algorithm. Tiny-YOLOV3
has a total of 22 layers, including convolutional layers, max
pooling layers, up-sampling layers, and concatenation layers,
as shown in Fig. 1. Tiny-YOLOV3 can produce two feature
maps with two different scales to facilitate the detection of
large and small objects. Tiny-YOLOv3 was trained on a
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workstation with Intel CPU and Nvidia GPU processors
through Darknet deep learning framework under Ubuntu
operating system, as shown in TABLE I. The training dataset
contains a total of 5386 diver images.

19333 9339 3839

Fig. 1. Network architecture of Tiny-YOLOV3.

TABLE I. TRAINING ENVIORNMENT OF TINY-YOLOV3

P CPU: Intel Xeon Gold 5122
rocessor GPU: GeForce RTX 2080 Ti

Operating §ystem/ Ubuntu / Darknet

Deep learning framework

Programming language C language

B. Montion Controllers

A set of three PID motion controllers are developed to
enable the diver-following capability of the Taiwan Moonshot
AUV. The AUV main computer, which is a Raspberry Pi
single board computer, executes the three motion controllers.
The data needed by the motion controllers are sent from the
diver detection unit, including the center coordinates (x, y) and
the dimensions (w, /) of detected bounding boxes, as shown
in Fig. 2. The desired and feedback values for the three
controllers are shown in Fig. 3. For the yaw controller, the
target value is x,, the x-coordinate of an image center, and the
feedback value is x, the x-coordinate of a bounding box center.
For the heave controller, the target value is y,, the y-
coordinate of an image center, and the feedback value is y, the
y-coordinate of a bounding box center. For the surge
controller, the target value is 0.2 and the feedback value is
( hqXwq

), the area ratio of a bounding box to the entire image.
640x480

The three PID controllers generate motion commands to
bring the bounding box of the diver to the center of the camera
view and to keep the size of the bounding box constant. The
Ziegler-Nichols method is used to obtain the PID gains of the
heave, yaw, and surge controllers, as shown in TABLE II.
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Fig. 2. Bounding box information for motion controllers.
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Fig. 3. Desired and feedback values of three motion controllers.

TABLE II. PID GAINS OF MOTION CONTROLLERS

Kp Kp K,

Yaw 0.03 0.0001 0.07
Heave 0.12 0.01077 0.3433
Surge 0.54 0.082 0.891

C. Diver Detection Unit

The main components of the diver detection unit include a
LattePanda single-board computer, a webcam module, and
two 24V-to-12V DC-DC converters, as shown in Fig. 4. The
diver detection unit has an input voltage of 24 VDC, two
communication interfaces, a data rate of 4 Hz, and a maximum
power consumption of 36 W. The resolution of the webcam
image is 640 x 480 pixels. The underwater field of views are
63" horizontally and 48" vertically. The RS-232 interface is
used for underwater data transfer between the diver detection
unit and the AUV main computer. The Ethernet interface is
used for data transfer after the AUV is retrieved back to the
surface vessel, surface platform, or the ground

b

Fig. 4. Diver detection module and its specifications..
III. FORWARD ALTIMETER-BASED OSTACLE AVOIDANCE

Two altimeters will be installed on the front side of the
Taiwan Moonshot AUV, facing forward, as payload devices
to obtain the distance readings between the AUV and
obstacles, as shown in Fig. 5. The primary obstacle avoidance
procedure based on two forward looking altimeters is shown
in Fig. 6. When the AUV begins to execute the waypoint
navigation missions, the waypoint navigation part of the
algorithm will navigate the AUV towards the desired
waypoints one after another by changing the AUV’s heading
and speed. Meanwhile, based on the distance readings from
the two forward looking altimeters, the obstacle avoidance
part of the algorithm will determine the AUV’s speed, turning
direction, and moving distance to avoid obstacles. When the
distance readings indicate that no obstacles are within a pre-
defined distance threshold in front of the AUV, the AUV will
switch back to t/he waypoint navigation mode.
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Fig. 5. Locations tentative to install two forward looking altimeters.
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IV. 3D-MODELING UNDERWATER DATASET
AUGMENTATION

Ever since Al algorithms using DNN or CNN were
highly promoted in early 2010’s, e.g., [6], YOLO has been
known one of the best options for real-time objection
recognition tools. Theoretically, at least 10,000 pictures with
various viewpoints, sizes, and positions for the same object is
needed to achieve 90% accuracy by commercially available
tools, e.g., [7]. It is hard to massive amount of samples for
rare object underwater, e.g., special plankton, sea spider, etc.
To resolve this problem, a dataset augmentation method
using 3D modeling is proposed in this investigation.

3D modeling attains two features: multiple viewpoints
and back-grounds. Referring to Fig. 7, assume the target
object is placed at origin, (0,0,0). At least 26 viewpoints can
be generated, which are from (x,y,z), where x,y,z € {—1, 0,
+1} and x,y,z =0 at the same time. The amount of information
that a viewer can collect from an object is proportional to the
projection area from his/her viewpoint. Therefore, those
viewpoints with maximum information is (x,y,z), [X|=y|=|z|=
1. Namely, the 8 corners of the cube in Fig. 5 are the best
selections. As for the added background, basic selections
include: clear water, dark water, coral reef, rocks, seagrass.
With reference to Fig. 8, the examples of clown fish and the
diver images can be easily generated.
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Fig. 7. Multiple 3D modeling viewpoints
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Fig. 8. Examples of 3D modeling : (a) clown fish; (b) diver

V.  SIMULATIONS AND EXPERIMENTS

This section presents the results from hardware-in-the-
loop simulations to verify the diver-following and obstacle
avoidance capabilities of the Taiwan Moonshot AUV. The
HIL simulation platform used in this research was developed
in our previous work [5]. This section also presents the results
from towing tank experiments to verify the single diver-
following capability of the Taiwan Moonshot AUV in a closed
water environment.

A. Diver-following HIL Simulations

Two HIL simulations are presented to demonstrate the
diver-following performance of the Taiwan Moonshot AUV
under two different motions of the diver. In the first HIL

simulation, the diver moves along a straight path with a
constant speed of 0.2 m/s and maintains at a constant altitude.
The simulation results show that the AUV can follow the diver
and the deviation of the AUV trajectory from a straight line is
roughly within 15 cm. As for the diver detection performance,
the precision index is 98.2% and the recall index is 79.2%, as
shown in the left of 9.

In the second HIL simulation, the diver moves along a
square path with a constant speed of 0.2 m/s and maintains at
a constant altitude. The simulation results show that the AUV
can follow the diver; bounding boxes of the diver are roughly
around the center of the camera view. As for the diver
detection performance, the precision index is 99.3% and the
recall index is 95.9%, as shown in the right side of Fig. 9.
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Fig. 9. Diver-following HIL simulation results for which the diver moves
along a straight path (left) and a square path (right).

B. Obstacle Avoidance HIL Simulations

Two HIL simulations are presented to demonstrate the
obstacle avoidance performance of the Taiwan Moonshot
AUV in two different-sized water tanks with two different-
shaped obstacles. In the first HIL simulation, the dimension of
the water tank is specified as 50 m (length) x 16 m (width) x
3.5 m (water depth). There are two obstacles placed in the
water tank. The first obstacle is a cylindrical object whose
dimension is specified as 1.0 m (diameter) x 3 m (height). The
second obstacle is a rectangular object whose dimension is
specified as 0.2 m (length) x 1.0 m (width) x 1.5 m (height).
As shown in Fig. 10, the simulation results indicate that the
AUV is able to avoid the two obstacles and arrive at the four
desired waypoints to complete the waypoint navigation tasks
in a larger water tank environment.

In the second HIL simulation, the dimension of the water
tank is specified as 50 m (length) x 8 m (width) x 3.5 m (water
depth), which is narrower than the one used in the first
simulation. Additionally, the two obstacles used in the second
simulation are the same as those used in the first simulation.
As shown in Fig. 11, the simulation results indicate that the
AUV is able to avoid the two obstacles and arrive at the four
desired waypoints to complete the waypoint navigation tasks
in a smaller water tank environment.
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Fig. 10. Obstacle avoidance HIL simulation results for which the AUV needs
to avoid two obstacles and arrive at four waypoints in a larger tank.
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Fig. 11. Obstacle avoidance HIL simulation results for which the AUV needs
to avoid two obstacles and arrive at four waypoints in a smaller tank.

C. Closed Water Experiments

Diver-following experiments for the surge-yaw and
heave-yaw hybrid following modes were conducted with a
single diver moving in front of the Taiwan Moonshot AUV,
as show in Fig. 12. The diver detection results for the surge-
yaw and heave-yaw following experiments indicate that the
trained Tiny-YOLOV3 obtains high detection accuracy in
these two experiments, as shown in Fig. 13. Overall, the
experimental results show that the Taiwan AUV is able to
follow a diver who slowly performs a linear or planar motion
in a closed water environment.

Fig. 12. Diver-following experiments conducted using the Taiwan
Moonshot AUV in a towing tank.

Surge-Yaw Following Heave-Yaw Following

Ground truth | 2128

Ground truth 1198

Detected 1966 Detected 1007
TP 1928 TP 961
FP 18 FP a6
FN 200 FN 237
Precision 98.07 % Precision 95.43 %
Recall 90.60 % Recall 80.22 %
LmAP 9039% |  [mAP 78.29%

Fig. 13. Diver detection results for surge-yaw and heave-yaw following
experiments.

D. 3D-modeling Compared with Benchmark Datasets

Many widely recognized marine or ocean related
datasets are spread over the internet, e.g., ImageNet [8],
Fish4Knowledge [9]. We have conducted the same learning
and testing procedures to the 2 datasets and ours to make a
fair comparison using the following key performance indices
(KPI). Fig. 14 is graphical demonstration of the these KPIs.

» UIQM (underwater image quality measure)

* UCIQE (underwater color image quality evaluation)
* UICM (underwater image colorfulness measure)

* UISM (underwater image sharpness measure)

* UlconM (underwater image contrast measure)
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Fig. 14. Performance comparison with benchmark datasets

VI. CONCLUSIONS

This paper presents an artificial intelligence AUV, the
Taiwan Moonshot AUV, which is able to perform optical
vision-based diver-following and forward looking altimeter-
based obstacle avoidance. The diver detection CNN, the
motion controllers, and the diver detection unit, which enable
the optical vision-based diver-following capability of the
AUV have been presented. The primary obstacle avoidance
procedure based on two forward looking altimeters has been
illustrated as well.

HIL simulations have been presented to demonstrate that
the Taiwan Moonshot AUV can follow a single diver who
moves with different trajectories. In addition, HIL simulations
have also been presented to demonstrate that the Taiwan
Moonshot AUV can avoid obstacles and arrive at desired
waypoints in closed water environments of different sizes.
Moreover, experimental results obtained from a towing tank
have been presented to show that the Taiwan Moonshot AUV
is able to detect a single diver and follow the detected diver,
who slowly performs a linear or planar motion in a closed
water environment.
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