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Abstract— This paper presents a novel architecture for direct
digital frequency synthesizer (DDFS) based on a modified par-
abolic polynomial interpolation method. A 16-segment parabolic
polynomial interpolation is adopted to replace conventional
ROM-based phase-to-amplitude conversion method. Besides, the
proposed parabolic polynomial interpolation is realized in a
multiplier-less fashion such that the speed can be significantly
improved. The proposed DDFS is implemented in a standard
0.13 um cell-based technology. The maximum clock rate is 227
MHz, and the core area is 0.25 mm?. The simulation result shows
that the spurious free dynamic range (SFDR) is 117 dBc.

I. INTRODUCTION

Frequency synthesizer is an essential part for communica-
tion systems. Conventionally, phase-locked loops (PLLs) are
usually adopted to synthesize the sinusoid. However, PLL-
based frequency synthesizers suffer from an inherent inability
to simultaneously provide both fast frequency switching and
high spectral purity [1]. This imperfection makes PLL un-
suitable for modern wireless communication systems, which
usually require fast frequency switching. The direct digital
frequency synthesizer (DDFS) has been considered as a better
alternative other than PLL-based frequency synthesizer, be-
cause it can realize the fast frequency switching while keeping
excellent spectral purity.

Fig. 1 shows the conventional DDFS architecture. The
digital phase information are converted into samples of sine
amplitude by a ROM look-up table, and then samples are
converted into an analog signal by Digital-to-Analog Converter
(DAC). However, this architecture demands a very large ROM
as the storage of sinusoid amplitude and consequently suffers
from the inherent drawback of large power dissipation, large
chip area, and slow speed. Even though the ROM size can
be significantly reduced by truncating the output of the phase
accumulator, the added spurious noise will degrade the spectral
purity. On the other hand, many researches have been reported
on the designs of ROM-less DDFS, such as [2], [3], [S]-[8].
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The ROM-less DDFSs employ different algorithm in stead of
ROM to realize the phase-to-sine mapper.

Many prior ROM-less DDFS works developed sophisticated
polynomials to carry out the phase-to-sine mapper. However,
any method that is based on high-order polynomials will
be hard to meet the speed requirement of modern wireless
communication applications due to the massive complexity.
Considering the probability of hardware realization, any poly-
nomial whose order is large than three may be inefficient to be
implemented. On the other hand, the recently reported DDFSs
based on 2nd-order polynomials are still difficult to achieve
high performance without sacrificing the speed. This paper
investigates and proposes an improved DDFS architecture
based on a modified parabolic polynomial. The proposed
DDFS can simultaneously achieve an excellent spectral purity
and a satisfactory speed.
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Fig. 1. Block diagram of the conventional DDFS

II. DDFS ARCHITECTURE
A. The Modified Parabolic Polynomial Interpolation

To implement the phase-to-sine mapping function by a 2nd-
order polynomial, the parabolic polynomial could be the most
convenient choice. we can divide the first quadrant of the
cosine signal (cosf, 0< 6 < 7/2 ) into M = 2™ segments,
and each segment can be approximated by the parabolic



polynomial, which is

y(x) = aix? +¢, i=1~ M. 1)

The parameter a; and c¢; can be derived from the lest square
method. Although the SFDR of this DDFS will be increased
as the increas of M, the large M will lead to divergence when
performing least square method.

To improve the performance of the DDFS based on the
parabolic polynomial, [2] proposed a quasi-linear interpolation
method (QLIP). It was based on the observation that a cosine
signal is close to a parabola at & = 0, but it is closer to a
straight line at § = 7/2. The QLIP method can be expressed

as follows:
_ 1<i<3M/4
y(w) = { 3M/4+1<i<M. @

According to [2], the QLIP method has 6 dBc improvement
over the parabolic polynomial method.

However, both the QLIP and the parabolic polynomial
method have the same difficulty in fitting the curvature of
the sinusoid. The curvature of a given curve y = f(x) can be
expressed as follows:

2
a;r° + ¢4,
a;T + ¢4,

yll

k(r) = 1 g2 3)
where k(z) is the curvature at . While the parabolic poly-
nomial is adopted, its Ist-order derivative (y' = 2a;x) is
proportional to the 2nd-derivative (3’ = 2a;). Thus, we can
use only one parameter a; to determine both the slope and
the curvature of the curve, which will lead to difficulties in
the fitting process. In order to improve the adjustability of the
parabolic polynomial, we introduce a lst-order term into Eq.
(1), and Eq. (1) can be modified as follows:

y(x) =ai(r—d)* +¢, i=1~M 4)

where d; is the displacement factor. When Eq. (3) is used to
carry out the phase-to-sine mapping function, there are two
parameters that can be used to adjust the characteristics of the
curve in each segment. To evaluate the performance of the
modified parabolic polynomial, we design different DDFSs
based on these three methods and compare their performance.
The coefficients of these DDFSs are derived by the least square
method of MATLAB, where the output of these DDFSs are
not quantized. Fig. 2 depicts the error between the ideal cosine
function and the parabolic polynomial method for M = 4,
where the maximum error is 7 x 1072, Fig. 3 and Fig.
4 shows the computed error of the QLIP method and the
proposed method, where the maximum error are 3.77 x 1073
and 4.8 x 104, respectively.

Table I shows the SFDR comparison between the QLIP
method and the proposed method under different number of
segments. The SFDR of the proposed method for M = 16
has almost 27 dBc improvement over that reported in [2]. As
to the computation complexity, Eq. (4) need only one more
addition/subtraction than Eq. (2). However, this overhead is
acceptable compared to the significant improvement of the
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spectral purity. Since the SFDR of 100 dBc can meet the
requirement of most modern wireless communication applica-
tion, we adopt the 16-segment modified parabolic polynomial
method to realize the proposed DDFS.

TABLE I
THE SFDR OF THE QLIP METHOD AND THE PROPOSED METHOD UNDER
DIFFERENT M

QLIP method [2] | proposed method
M=4 65 dBc 81 dBc
M =38 78 dBc 99 dBc
M =16 90 dBc 117.4 dBc

B. Hardware Implementation

To consider the hardware implementation of the DDFS
based by the proposed modified parabolic polynomial, we must
first choose a suitable length of the phase word. The reason
is that the phase word-length determines the performance and
the complexity of the phase-to-sine mapper. According to [4],
the worst case SFDR for a DDFS with a perfect phase-to-sine
mapper (unquantized output) can be expressed as follows:

SFDR < 20- log 2V, 3)

where W is the phase word-length. Since the simulation result
shows the SFDR of the proposed methos for M = 16 is 117
dBc, the phase word-length is chosen to be 20 bits.

Given the phase word-length of 20 bits, such a massive
phase information will increase the hardware complexity and
slow down the operation speed. In order to enhance the speed,
the multiplication in Eq. (4) can be modified to reduce the
complexity. The coefficient a; is manipulated as a 15-digit bi-
nary sequence, and therefore the multiplication can be replaced
by the shift-and-add operation (Ex. 0.75-x =2~z +272.2).
Fig. 5 shows the block diagram of the proposed DDFS. The
frequency control word (FCW) is set as 32-bit to obtain a fine
frequency tuning range. The output of the squarer is shifted
and selected by Mux1 to Mux15. The symbol a;_; in the Fig. 5
represents the j-th digit of the sequence for ¢-th segment. The
summation of the total 16 multiplexer outputs is realized by a
4-level adder tree. To reduce the latency caused by the adder
tree, the summation is implemented by a 4-stage pipeline.

III. SIMULATION AND IMPLEMENTATION

The proposed DDFS prototype is carried out by TSMC
(Taiwan Semiconductor Manufacturing Company) 0.13 pm
CMOS technology to verify the performance. All of the
process corners : [0°C, +100°C], and (SS, TT, FF) models,
are simulated. Fig. 6 shows the layout of the proposed DDFS
prototype. Fig. 7 shows the simulation result of the SFDR,
which is 117 dBc. The specifications of the proposed prototype
is summarized in Table II. By adopting the pipeline and
multiplier-less design, the maximum clock rage is up to 227
MHz. Table III presents the comparison between the proposed
DDFS and the recent ROM-less DDFS. The comparison
shows that the proposed DDFS has the largest SFDR while
maintaining the satisfactory speed and energy efficiency.

TABLE 11
SPECIFICATIONS OF THE PROPOSED DDFS

Technology 0.13 pm CMOS process
Power supply 12V
Frequency control word (FCW) | 32 bits
Phase word 20 bits
Frequency tuning range 0.053 Hz
SFDR 117 dBc
Max. clock rate 227 MHz

Power dissapation 79 mW @ 227 MHz

Area 2.015 mm? (whole chip)
0.33 mm?2 (core area)
TABLE III
COMPARISON
[5] [6] [7] [8] ours
Process () 0.5 0.25 0.18 0.28 0.13
SFDR (dBc) 91.51 80 84 110 117
Phase word 16 n/a n/a n/a 20
length (bit)
Energy (mW/MHz) 0.56 0.127 0.6 0.4 0.35
Clock (MHz) 106 600 150 250 227
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Fig. 6. The layout view of the proposed DDFS

IV. CONCLUSION

A modified parabolic polynomial to realize the phase-to-
sine mapping function of a DDFS is proposed in this paper.
The proposed method can achieve a significant improvement
in SFDR compared to the QLIP method [2]. A 16-segment
parabolic polynomial is employed to implement a ROM-
less DDFS. The logic operation of the proposed DDFS is
manipulated to achieve a multiplier-less design. The pipeline
design is adopted to further reduce the latency in signal
processing. The proposed DDFS achieves a SFDR of 117dBc,
and the maximum clock rate is 227 MHz.
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Fig. 5. The block diagram of the proposed DDFS
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