
Codec Design for Variable-length to Fixed-length
Data Conversion for H.263

Chua-Chin Wang, Senior Member, IEEE, Gang-Neng Sung, and Jia-Hao Li
Dept. of Electrical Engineering
National Sun Yat-Sen University

Kaohsiung, Taiwan 80424
Email: ccwang@ee.nsysu.edu.tw

Abstract— A codec (encoder-decoder) design for interfacing
variable-length and fixed-length data conversion is proposed in
this paper. The poor memory efficiency of the variable-length
compression approach can be avoided while its advantages can
be preserved. The introduction of the proposed codec converts
the variable-length symbols into fixed-length packets which can
be hardwaredly and parallelly processing without waiting for
any other information, which indicates the decoding process is
context-free. The proposed codec encodes extra symbols in the
redundant bits of the padding bits of the fixed-length packets.
This novel encoding scheme relaxes the intrinsic poor bit rate of
the traditional fixed-length data compression.

Keywords : fixed-length, variable-length, compression, H.263, spar-
sity

I. INTRODUCTION

The effective real-time high-quality video signal of the up-
coming DTV (digital TV) era heavily replies on the transmission
and storage of the broadcast data, [2]. Both of the transmission and
storage of such a huge amount of data demand efficient compression
and decompression (comp-decomp) schemes to meet the requirements
of the real-time signals, e.g., video signals. Many comp-decomp
approaches have been developed, e.g., VQ (vector quantization),
DCT [5], run-length, entropy constrain, etc. When it comes to
the high-speed data compression, H.263 has been recognized as a
more powerful data compresseion standard than the MPEGs, i.e.,
MPEG2, MPEG4, etc., [8]. The combination of DCT (discrete
cosine transform), run-length coding and Huffman coding has brought
the success to H.263 and MPEG, [3], [7]. These variable length
approaches enjoys a higher compression rate than the fixed-rate
or fixed-length methods, e.g., [1], [9], based on the theoretical
analysis [6]. However, the variable-length approaches suffers from
two intrinsic difficulties : poor memory efficiency (that is, the sparsity
problem in the memory), and data dependency which result in that
the decoding is not context-free. Though the former problem can
be relaxed by using sophisticated algorithms [4], the trade-off is
the processing time which might lead to the sacrifice of real-time
quality. The latter problem is caused by no guard bits or fields
in the continuous bit stream to extract correct words as well as
symbols. It makes the parallel processing or pipelining very hard
to be implemented. Hence, we proposed to introduce a fixed-length
and variable-length conversion interface (codec) design to avoid these
two difficulties while preserve the advantage of the variable-length
comp-decomp approaches. The introduction of the proposed codec
converts the variable-length symbols into fixed-length packets which
can be hardwaredly and parallelly processing without any waiting
latency. In short, the most important feature of the proposed codec is
to encode more symbols in the redundant bits (i.e., the padding bits)
of the fixed-length packets.

Motion

Estimation

Block

Transformation
 Quantization

Multi-Symbol

 Encoder

Multi-Symbol

 Decoder

Inverse

Quantization

Block

Transformation

Motion

Compensation

Channel

Fig. 1. Application of the proposed codec

II. CODEC INTERFACE DESIGN FOR H.263

It is well known that the fixed-length compression is suffered
from poor compression rates. On the contrary, the variable-length
approaches are slow due to the data dependency and table lookup
operations. Our approach will preserve the advantage of the fixed-
length methods and relax the poor compression rate by encoding
extra symbols in redundant bits. The proposed codec can be use in
fixed-length and variable-length compressions of H.263 as shown in
Fig. 1 to attain the advantages of these two methods.

A. Multi-symbol encoding

A source H is defined as an ordered pair H = (S, P), where
S represents a set of source symbols S = {S1, S2, S3, . . . , Sn} with
probability distribution P (Si) = Pi, and P1 ≥ P2 . . . ≥ Pn. Then,
a Huffman tree can be constructed basing upon the balance of the
probability of the two sub-trees at each node [4]. For instance, S1 =
0, S2 = 10, S3 = 110, . . . , Sn = 111 . . . 1, as shown in Fig. 2. The
length of the longest symbol is assumed to be n. In order to achieve
the fixed-length compression, padding “1”s or ”0”s are required to
modify the mentioned S set and generate the fixed-length packets.
All of the padding bits are called redundant bits (RB) which will
deteriorate the memory efficiency as well the compression bit rate
even if they are simply assigned to be “0” or “1”, since no information
is conveyed in this way.

A simple thought to utilize these redundant bits to improve the
compression rate is to encode several symbols, called basic symbols
(BS), together into a packet. Thus, many redundant bits are combined,
which might be more than the number of basic symbols. Those
symbols encoded by the redundant bits are named extra symbols
(ES). Hence, the X-Y multi-symbol encoding indicates that a packet
is composed of X BS’s and Y ES’s, where the Y ES’s are denoted
by the padding bits for the X BS’s. For instance, a 3-1 multi-symbol
encoding is summarized as follows.

Assume the 3 BSs are Si, Sj , Sk as follows.

Si = (a1a2 . . . aiai+1ai+2 . . . an) = (a1a2 . . . ai0 . . . 0)

Sj = (b1b2 . . . bjbj+1bj+2 . . . bn) = (b1b2 . . . bj0 . . . 0),

Sk = (c1c2 . . . cjck+1ck+2 . . . cn) = (c1c2 . . . cj0 . . . 0),

Proceedings of the 2006 International Conference on Intelligent
Information Hiding and Multimedia Signal Processing (IIH-MSP'06)
0-7695-2745-0/06 $20.00 © 2006

where a1 . . . ai, b1 . . . bj , and c1 . . . ck are the original bits of
Huffman tree representation of Si, Sj , and Sk , respectively. The
rest of the bits are padding redundant bits. A fourth symbol, Sl =
(d1d2 . . . dldl+1dl+2 . . . dn), where d1 . . . dl are the original bits, is
considered to be conveyed by the overall redundant bits in Si, Sj ,
and Sk. The pre-requisite is n ≤ (n− i) + (n− j) + (n− k). Then,
the encoding steps are

(E1). Label the position of the leading redundant bits of Si, Sj , and
Sk, respectively, which are pi, pj , and pk.

(E2). Extend Si, Sj , and Sk to be n-bit codewords. Then, initialize
all of the redundant bits to be “0”.

(E3). Start with the first bit of Sl, i.e., d1, which is XORed with
ai. The outcome is placed at api

. Then, the second bit of Sl,
which is d2, is XORed with api

. Again, the resulted bit is
placed at api+1

. The XOR operation is iteratively executed till
the LSB of Si is replaced.

(E4). Then, the LSB of Sj is replaced by the XORed outcome of
the LSB of Si and the first bit of the rest bits of Sl. The XOR
operation is executed from LSB of Sj toward its MSB until
all of the bits of Sl is encoded. If all of the remaining bits
of Sl are not encoded when all of the RBs in Sj run out, the
first bit of the remaining original bits of Sl will be XORed
with the bpi

. Then, the outcome is placed in cpk
of Sk. The

XOR operation is executed toward the end of Sk till all of the
remaining bits of Sl is encoded.

Fig. 3 shows an example of the 2-1 multi-symbol encoding
procedure. The proposed approach can be easily applied to a higher
order encoding, e.g., 3-2, 4-2, 5-3, etc., as long as the length of all
of the redundant bits are larger than the overall bits of the symbols
to be encoded.

B. Multi-symbol decoding

The decoding procedure at the receiver terminal is basically a
reverse process of the mentioned encoding procedure. An illustration
of the 2-1 multi-symbol decoding procedure is given in Fig. 4. It is
summarized as follows.

D1). Find the leading “0” in Si, Sj , and Sk of which positions are
labeled as pi, pj , and pk, respectively.

D2). Start from the cpk
toward its MSB which is XORed with its

next bit. The generated bit is pushed into a stack.
D3). The XOR operations are executed till the cpk

is hit. The, the
XOR operation starts from the LSB of Sj toward its MSB till
bpj

is hit.
D4). The top of the stack is then XORed with the LSB of Si. The

outcome is also pushed into the stack. The XOR operations of
adjacent bits are then executed toward MSB until api

is hit.
Every generated bit is pushed into the stack.

D5). Pop the first n bits of the stack which is Sl with padding 0’s.

C. Multi-symbol conversion for H.263

Better compression ratio leads to a lower bit rate which is
highly welcomed in digital video signal transmissions. It is an
interesting problem to know whether there is an optimal solution
for the multi-symbol encoding to attain an optimal compression rate.
The mentioned multi-symbol encoding is defined as an X-Y encoding,
which indicates that there are Y symbols encoded in the redundant
bits of a total of X symbols. Referring to Fig. 5 which is the Huffman
tree table for H.263. The shortest code is 3 bits, while the longest
one is 13 bits including the sign bit. Statistically, it will stand a better
chance for 3 BS’s to encode one ES after a series of simulations.

Hence, the entire variable-length to fixed-length codec design for
H.263 is based on the mentioned algorithms and analysis. A codec
using 3-1 multi-symbol encoding scheme is implemented as follows.

Encoder : It is basically a finite state machine (FSM) as illustrated
in Fig. 6. The only difference between the flow chart of Fig. 6 and the
encoding algorithm (Step E1 to E4) is that we check the remaining
redundant bits after each extra symbol is encoded. If there are enough
redundant bits for the next symbol, it will be encoded right after the
previous extra symbol by the similar XOR operations. Hence, the
compression ratio can be further reduced. Notably, at most 2 extra
symbols can be encoded theoretically in such an encoding scheme.
Decoder : A single-symbol (SS) decoder is required to decompose
the received BS symbol into redundant bits and original symbol bits.
The received data are fed into a redundant-bit (RB) counter to find
out the number of RB’s. The original received data are shifted right
and then left by the same number of RB’s count to recover the symbol
bits. Both of the RB’s count and symbol bits are output for the next
stage.

A 2-stage decoder is shown in Fig. 7 to derive the ES bits. The
RB’s count of every basic symbol SS decoder is fed to the ES
decoder. So are the received data’s. The ES decoder is one FSM
which realize the 3-1 decoding scheme addressed in Step D1 to D5.
Notably, the ES active output of the ES decoder indicate whether the
ES is validated or not.

S

1

S

2

S

3

S

n-1

S

n

0

10

110

11...10
 111...11

Fig. 2. A Huffman tree example (a skewed tree)

III. SIMULATION AND IMPLEMENTATION

TSMC (Taiwan Semicondutor Manufacturing Company) 0.18
µm 1P6M CMOS technology cell library is adopted to implement
the proposed design. Fig. 8 shows the layout of the design. Post-
layout simulation results of 3-1 encoding H.263 is revealed in Fig.
9. By contrast, Fig 10 is the decoding results. The operating clock is
166 MHz at all simulation corners. The bit rate is 900 Mbps to 1.5
Gbps given a 100 MHz system clock, which meets the 5 Kbps to 1.0
Gbps requirement of H.263.

IV. CONCLUSION

A novel multi-symbol encoding method is proposed in this
work. It enhances the poor bit rate of prior fixed-length compression
approaches by encoding more symbols in the redundant bits. Parallel
decoding at the receiver terminal is maintained. On the other hand,
the poor memory efficiency and slow speed of prior variable-length
compression approaches are avoided.

Proceedings of the 2006 International Conference on Intelligent
Information Hiding and Multimedia Signal Processing (IIH-MSP'06)
0-7695-2745-0/06 $20.00 © 2006

1
 1
 1
 0
 0

S

k

p

i

p

j

(E1)

1
 0

1
 1
 0

S

i

S

j

1
 0

1
 1
 0

S

i

S

j

(E2)

(E3)

XOR
d

1
(a)

1
 0
 0

1
 1
 0
 0

S

i

S

j

(b)

XOR

d

3

XOR
d

5

(
a
)

(E4)

1
 0
 0
1

1
 1
 0
 0
 1

S

i

S

j

1
 0
 0
 1

1
 1
 0
 1
 1

S

i

S

j

1
 0
 0

1
 1
 0
 0

S

i

S

j

S

l

1
 1

1

0
 0

0

1

S

k

1
 1
0

p

k

S

k

1
 0

1
 1
 0

S

i

S

j

1
 1

1

0

0

0

0
 0

0
0

0

1

S

k

1
 1
0
 0
0
 S

k

1
 1
0
 0
0

1
 1
0

1

S

k

1
 1
0
 0
0

(E
5
)

S

k

1
 1
0
 0

0

0

XOR
d

4

1
 0
 0
1

1
 1
 0
 0
 1

S

i

S

j

S

k

1
 1
0
 0

0

(
b
)

1
 1

XOR
d

2

Fig. 3. An example of 3-1 multi-symbol encoding

(
D
1
)

p
i

p
j

S
i

S
j
 1
 1
 0
 1
 1

1
 0
 0
 1
 S
i

S
j
 1
 1
 0
 1
 1

1
 0
 0
 1

(
D
2
)

stack

XOR

S
i

S
j
 1
 1
 0
 1
 1

1
 0
 0
 1

0

(
D
2
)

XOR

S
i

S
j
 1
 1
 0
 1
 1

1
 0
 0
 1

(
a
)

S
i

S
j
 1
 1
 0
 1
 1

1
 0
 0
 1

(
D
3
)

(
b
)

(
D
5
)

1
 1
 1
 0

stack

0

stack

0

1

1

XOR

S
i

S
j
 1
 1
 0
 1
 1

1
 0
 0
 1

1

XOR

S
i

S
j
 1
 1
 0
 1
 1

1
 0
 0
 1

stack

0

1

1

1

stack

0

1

1

1
1
 1
0
 0
S
k

0
 0

1
1
 1
0
 0
S
k

p
k

1
1
 1
0
 0
S
k

1

1

0

1
1
 1
0
 0
S
k

0

1

1

1
1
 1
0
 0
S
k

0

XOR

1

(
D
4
)

1
1
 1
0
 0
S
k

0

1

1
1
 1
0
 0
S
k

0

1

1
S
l

(
a
)

(
b
)

Fig. 4. An example of 3-1 multi-symbol decoding

ACKNOWLEDGMENT

This research was partially supported by National Science Council
under grant NSC 94-2213-E-110-022 and NSC 94-2213-E-110-024,
and “Aim for the Top University” project of NSYSU and MOE,
Taiwan. The authors would like to thank CIC of National Science
Council (NSC), Taiwan, for their thoughtful help in the chip fabrica-
tion of the proposed work.

REFERENCES

[1] G. Cote, M. Gallant, and F. Kossentini, “Semi-fixed-length motion vector
coding for H.263-based low bit rate video compression,” IEEE Trans.
on Image Processing, vol. 8, no.10, pp. 1451-1455, Oct. 1999.

[2] K. Challapali, X. Lebegue, J. S. Lim, W. H. Paik, R. S. Girons, E.
Petajan, V. Sathe, P. A. Snopko, and J. Zdepski, “The grand alliance
system for US HDTV,” Proceedings of the IEEE, vol. 83, no. 2, pp.
158- 174, Feb. 1995.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

Fig. 5. H.263 symbol table

Initial State

Encode Second

Symbol

Encode First

Symbol

Encode Third

Symbol

Are there enough

redundant bits for

next symbol

Encode Next

Symbol

YES

NO

Output Encoded

Symbol

Fig. 6. FSM of the 3-1 encoder design

Proceedings of the 2006 International Conference on Intelligent
Information Hiding and Multimedia Signal Processing (IIH-MSP'06)
0-7695-2745-0/06 $20.00 © 2006

Serial
to

Parallel

Single
Symbol

Decoder

Extra

Symbol

Decoder

input

bitstream

39

13

13

4

4

13

13

13

RB length

RB length

BS
1

BS3

ES
_active

ES

13

4

BS
2
13

4

ES_RB length
Single
Symbol

Decoder

Single
Symbol

Decoder

39

Fig. 7. Schematic of the 3-1 decoder

1580(um)

1

5

8

0

(
u

m

)

760(um)

7

6

0

(
u

m

)

Encoder

Decoder

Fig. 8. Layout of the proposed codec

Symbol 1

Symbol 2

Symbol 3

Symbol 4

Encoded data

RB_length

Fig. 9. Post-layout simulation result of the encoder

001010000011101000000100000010111000000

Symbol 1

Symbol 2

Symbol 3

Symbol 4

Input bit stream

Fig. 10. Post-layout simulation result of the decoder

[3] S. B. Choi, and M. H. Lee, “High speed pattern matching for a fast
Huffman decoder,” IEEE Trans. on Consumer Electronics, vol. 41, no.
1, pp. 97-103, Feb. 1995.

[4] R. Hashemian, “Memory efficient and high-speed search Huffman
coding,” IEEE Trans. on Communications, vol. 43, no. 10, pp. 2576-
2581, Oct. 1995.

[5] T. Le, and M. Glesner, “A new flexible architecture for variable length
DCT trageting shape-adaptive transform,” 1999 IEEE Inter. Conf. on
Acoustic, Speech, and Signal Processing (ICASSP’99), vol. 4, pp. 1949-
1952, Mar. 1999.

[6] T. Lynch, “Comparison of time codes for source encoding” IEEE Trans.
on Communications, vol. COM-22, no. 2, pp. 151-162, Feb. 1974.

[7] A. Mohri, A. Yamada, T. Yoshida, H. Sato, H. Takata, K. Nakakimura,
M. Hashizume, and K. Tsuchihashi, “A real-time digital VCR en-
code/decode and MPEG-2 decode LSI implemented on 1 dual-issue
RISC processor,” IEEE J. of Solid-State Circuits, vol. 34, no. 7, pp.
992-1000, July 1999.

[8] I. E. G. Richardson, “Video codec design : developing image and video
compression systems,” John Wiley & Sons Inc., Reading : England,
2002.

[9] D. Yu, and M. W. Marcellin, “A fixed-rate quantizer using block-based
entropy-constrained quantization and run-length coding,” 1997 Data
Compression Conference (DCC’97), pp. 310-316, Mar. 1997.

Proceedings of the 2006 International Conference on Intelligent
Information Hiding and Multimedia Signal Processing (IIH-MSP'06)
0-7695-2745-0/06 $20.00 © 2006

