CODEC DESIGN FOR VARIABLE-LENGTH TO FIXED-LENGTH DATA
COMPRESSION BY USING MUTLI-SYMBOL ENCODING

Chua-Chin Wangt , Yih-Long Tseng, and Chun-Chih Chen

Department of Electrical Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan 80424
email : ccwang@ee.nsysu.edu.tw

ABSTRACT

A codec (encoder-decoder) design for interfacing variable-

length and fized-length data compression is proposed in
this paper. The poor memory efficiency of the variable-
length compression approach can be avoided while its
advantages can be preserved. The introduction of the
proposed codec converts the variable-length words into
a fized-length packets which can be hardwaredly and
parallelly processing without waiting for any other in-
formation. The proposed codec is to encode more sym-
bols in the redundant bits of the padding bits of the
fized-length packets. This novel encoding scheme re-
lazxes the intrinsic poor bit rate of the traditional fized-
length data compression.

Indexing terms : fixed-length, variable-length, com-
pression, DTV, sparsity gate drive

1. INTRODUCTION

The effective real-time high-quality video sig-
nal of the up-coming DTV (digital TV) era heavily
replies on the transport and storage of the broadcast
data. Both of the transport and storage of such a huge
amount of data demand efficient compression and de-
compression (comp-decomp) schemes to meet the re-
quirements of the DTV signals. Many comp-decomp
approaches have been developed, e.g., VQ (vector quan-
tization), DCT [4], run-length, entropy constrain, etc.
When it comes to the high-speed data compression,
the combination of Huffman coding and run-length
coding has been deemed as one of the most success-
ful methods, [2], [6]. These variable length approaches
enjoys a higher compression rate than the fixed-rate
or fixed-length methods, e.g., [1], [7], based on the
theoretical analysis [5]. However, the variable-length
approaches suffers from two intrinsic difficulties : poor
memory efficiency (a.k.a. sparsity problem in the mem-
ory), and data dependency. Though the former prob-
lem can be relaxed by using sophisticated algorithms

8 This research was partially supported by National Sci-
ence Council under grant NSC 91-2218-E-110-001 and 91-2622-
E-110-004.

tthe contact author

[3], the trade-off is the processing time which might
lead to the sacrifice of real-time quality. The latter
problem is caused by no guard bits or fields in the
continuous bit stream to extract correct words as well
as symbols. It makes the parallel processing or pipelin-
ing very hard to be implemented. Hence, we pro-
posed to introduce a fixed-length and variable-length
conversion interface (codec) to avoid these two diffi-
culties while preserve the advantage of the variable-
length comp-decomp approaches. The introduction of
the proposed codec converts the variable-length words
into a fixed-length packets which can be hardwaredly
and parallelly processing without waiting for any other
information. The most important feature of the pro-
posed codec is to encode more symbols in the redun-
dant bits of the padding bits of the fixed-length pack-
ets.

2. CODEC INTERFACE DESIGN

Our approach will preserve the advantage of
the fixed-length methods and relax the poor compres-
sion rate by encoding extra symbols in redundant bits.

2.1. Multi-symbol encoding

A source H is defined as an ordered pair H =
(S, P), where S represents a set of source symbols
S ={51,52,Ss,...,S,} with probability distribution
P(S;) = P, and P, > P»... > P,. Then, a com-
plete skewed Huffman tree can be constructed [3] :
S, = 0,8, = 10,83 = 110,...,S, = 111...1, as
shown in Fig. 1. The length of the longest symbol
is m — 1. In order to achieve the fixed-length compres-
sion, padding “1”s or ”0”s are required to modify the
mentioned S set and generate the fixed-length sym-
bols. All of the padding bits are called redundant bits
which will deteriorate the memory efficiency as well
the compression bit rate even if they are simply as-
signed to be “0” or “1”, since no information is con-
veyed in this way.

A simple thought to utilize these redundant bits
to improve the compression rate is to encode several
symbols, called basic symbols (BS), together into a



packet. Thus, many redundant bits are combined to be
able to more than the number of basic symbols. Those
symbols encoded by the redundant symbols are named
extra symbols (ES). Hence, the X-Y multi-symbol en-
coding indicates that a packet is composed of X BS’s
and Y ES’s, where the Y ES’s are denoted by the re-
dundant bits of the X BS’s. For instance, a 2-1 multi-
symbol encoding is summarized as follows.

Assume the 2 BSs are S; and S;, where i < j is
assumed without any loss of robustness.

S; =

Sj = (b1b2b1b3+1b3+2bn) :(blbzbJOO),

where a; ... a; and by ... b; are the original bits of Huff-
man tree representation of S; and Sj, respectively.
The rest bits are padding redundant bits. A third sym-
bol, S = (ci¢a...CrCE+1Ck12 - --Cn), Where ¢1...cp
are the original bits, is considered to be conveyed by
the overall redundant bits in S; and S;. The pre-
requisite is n < (n — ) + (n — j). Then, the encoding
steps are

(E1). Label the position of the leading redundant bits
of S; and Sj, respectively, which are p; and p;.

(E2). Extend S; and S; to be a n-bit word. Then,
initialize all of the redundant bits to be “0”.

(E3). Start with the first bit of Sy, i.e., ¢1, which is
XORed with a;. The outcome is placed at ap,.
Then, the second bit of S, which is ¢s, is XORed
with ap,. Again, the resulted bit is placed at
ap,,,- The XOR operation is iteratively exe-
cuted till the LSB of S; is replaced.

(E4). Then, the LSB of S; is replaced by the XORed
outcome of the LSB of S; and the first bit of the
rest bits of S;. The XOR operation is executed
from LSB of S; to its MSB until all of the bits of
Sy, is encoded. It will leave by, to by, . (. _.._.)
in S; as “0”.

Fig. 2 shows an example of the 2-1 multi-bit
encoding procedure. The proposed approach can be
easily applied to higher order encoding, e.g., 3-2, 4-2,
5-3, etc., as long as the length of all of the redundant
bits are larger than the overall bits to be encoded.

2.2. Multi-symbol decoding

The decoding procedure at the receiver ter-
minal is basically a reverse process of the mentioned
encoding procedure. An illustration is given in Fig. 3.
It is summarized as follows.

D1). Find the leading “0” in \S; and \S; of which po-
sitions are labeled as p; and p;, respectively.

D2). Start from the b,; toward the LSB which is XORed

with its next bit. The generated bit is pushed
into a stack.

(a1a2 e QiAi41A542 - - - an) = (a1a2 .. .aiO .. .0)

D3). The XOR operations are executed till the end of
S;.

D4). The top of the stack is then XORed with the
LSB of S;. The outcome is also pushed to the
stack. The XOR, operations of adjacent bits are
then executed toward MSB until a,; is hit. Every
generated bit is pushed to the stack.

D5). Pop the first n bits of the stack to get Sp with
padding 0’s.

2.3. Compression performance analysis

Better compression ratio leads to a lower bit
rate which is highly welcomed by digital video signal
transmissions. It is an interesting problem to know
whether there is an optimal solution for the multi-
symbol encoding to attain a best compression rate.
The mentioned multi-symbol encoding is defined as
an X-Y encoding, which indicates that there are Y
symbols encoded in the redundant bits of a total of
X symbols. Given the length, n, of a symbol, the
compression ratio of the X-Y multi-symbol encoding
provided that the overall redundant bits can accom-
modate the Y symbols is defined as follows :

X n—1

COMPX.y = e xy ¥ = I

X] (1)

A chart to illustrate the compression ratio is
given in Fig. 4. Although the lowest ratio is found to
be close to be high X and high Y, the compression ratio
will approach to a 0.5 bound. If the hardware complex-
ity to carry out the algorithms addressed in encoding
(Step E1 to E4) and decoding (Step D1 to D5), 3-2
multi-symbol scheme which provide a 0.6 compression
ratio will be a much better option to carry out the
codec design.

2.4. 3-2 Multi-Symbol Codec

Hence, the entire variable-length to fixed-length
codec design is based on the mentioned algorithms and
analysis. A codec using 3-2 multi-symbol encoding
scheme is implemented.

Encoder : Tt is basically a finite state machine
(FSM) as illustrated in Fig. 5. The only difference
between the flow chart of Fig. 5 and the encoding al-
gorithm (Step E1 to E4) is that we check the remaining
redundant bits after each extra symbol is encoded. If
there are enough redundant bits for the next symbol,
it will be encoded right after the previous extra symbol
by the similar XOR operations. Hence, the compres-
sion ratio can be further reduced. Notably, at most 2
extra symbols can be encoded theoretically in such a
3-2 encoding scheme.

Decoder : A single-symbol (SS) decoder is required
to decompose the received BS symbol into redundant



bits and symbol bits. The schematic of the SS de-
coder is shown in Fig. 6. The raw_data is fed into a
redundant-bit (RB) counter to find out the number of
RB’s. The original raw_data is shifted right and then
left by the same number of RB’s count to recover the
symbol bits. Both of the RB’s count and symbol bits
are output for the next stage.

A second stage decoder is shown in Fig. 7 to
derive the ES bits. The RB’s count of every basic
symbol SS decoder is fed to the ES decoder. So are
the raw_data’s. The ES decoder is one FSM which
realize the 3-2 decoding scheme addressed in Step D1
to D5. Notably, the symboli_act output of the ES
decoder indicate whether the symbol.i is validated or
not.

3. SIMULATION AND IMPLEMENTATION

Avanti 0.35 pm 1P4M CMOS technology cell
library is adopted to implement the proposed design.
Fig. 8 shows the die photo of the design. Post-layout
simulation results of 3-2 encoding is revealed in Fig.
9. By contrast, Fig 10 is the decoding results. The
operating clock is 166 MHz at all simulation corners.
The bit rate is 900 Mbps to 1.5 Gbps given a 100 MHz
system clock, which meets the 5 Kbps to 1.0 Gbps
requirement of MPEGA4.

4. CONCLUSION

A novel multi-symbol encoding method is pro-
posed in this work. It enhances the poor bit rate
of prior fixed-length compression approaches by en-
coding more symbols in the redundant bits. Parallel
decoding at the receiver terminal is maintained. On
the other hand, the poor memory efficiency and slow
speed of prior variable-length compression approaches
are avoided. It is very suitable to be placed between
the fixed-length and variable-length compressions to
accommodate the advantages of these two methods.

5. REFERENCES

[1] G. Cote, M. Gallant, and F. Kossentini, “Semi-
fixed-length motion vector coding for H.263-based
low bit rate video compression,” IEEE Trans. on

Image Processing, vol. 8, no.10, pp. 1451-1455,
Oct. 1999.

[2] S. B. Choi, and M. H. Lee, “High speed pat-
tern matching for a fast Huffman decoder,” IFEE
Trans. on Consumer Electronics, vol. 41, no. 1,
pp- 97-103, Feb. 1995.

[3] R. Hashemian, “Memory efficient and high-speed
search Huffman coding,” IEEE Trans. on Com-
munications, vol. 43, no. 10, pp. 2576-2581, Oct.
1995.

[4] T. Le, and M. Glesner, “A new flexible ar-
chitecture for variable length DCT trageting
shape-adaptive transform,” 1999 IEEE Inter.

Conf. on Acoustic, Speech, and Signal Processing
(ICASSP’99), vol. 4, pp. 1949-1952, Mar. 1999.

[5] T. Lynch, “Comparison of time codes for source
encoding” IEEFE Trans. on Communications, vol.
COM-22, no. 2, pp. 151-162, Feb. 1974.

[6] A. Mohri, A. Yamada, T. Yoshida, H. Sato,
H. Takata, K. Nakakimura, M. Hashizume, and
K. Tsuchihashi, “A real-time digital VCR en-
code/decode and MPEG-2 decode LSI imple-
mented on 1 dual-issue RISC processor,” IEEE
J. of Solid-State Circuits, vol. 34, no. 7, pp. 992-
1000, July 1999.

[7] D. Yu, and M. W. Marcellin, “A fixed-rate quan-
tizer using block-based entropy-constrained quan-
tization and run-length coding,” 1997 Data Com-
pression Conference (DCC’97), pp. 310-316, Mar.
1997.

10

53 A
S S

n-1 n

11..10 111..11

Figure 1: Skewed Huffman tree

SELITT] &) P

S 1) SERLTT]
SO SEEERLT]

P
(E2) (E3)

@ X3R4
SE[oelo] SE[LI[o]
SE[ole] SERDD
(b) XORC, (c) XOR ¢
SE[[[olo] SE[L[Y
SE[oelo] SERY
(E4
(ag (b)

XOR,
s\l\omo\lb%s\l\omom
SEEDPLEK SERDLLI

XOR C,

Figure 2: An example of 2-1 multi-symbol encoding



©1 b endata[Z:O] countl
SEOLLE  SEREED e . 2mbolt
§ Aol § Gl i i I count2 | symbol_act
(D2) (D3) =P M endata[5:3];, %555 _}_aymbols
SERLE] S«lllOlllOllﬁiRo eroad(s oounts | symbols
SEEREE || SOEEhEn Yo [T
XOR v stack stack endata[8:6] 3
(D(‘g 1 ® 1 symbol1
XOR XOR symbol2
SEREDRR ] SERLREE symbol3
SOODMAE e SOELRREE b
! stack Stack . .
© ©9) Figure 7: Schematic of the 3-2 decoder
XOR1 T
SELLLE  §GEER
SELEREE R
stack

- NN RYPS
SSEESSSES

&

Figure 3: An example of 2-1 multi-symbol decoding

n Y
=y
|
T
COMP length _;:
0.7 = -
—
0.65 4 >
B 5 -
06 B6 -
¥i
m7 ;
055 " |
05 mo | SSSEEEEEE
10 VAT IrN UYL

Figure 8: Die photo of the proposed codec

Figure 4: The compression ratio of differnt X-Y multi-
symbol encoding

unit : 101 ns
o e e o R
s 61
) Encode Fifth olk
Initial state Symbol data_in[2:0] o1 ] 1 1L
¢ symboll[2:0] 1
YES eymbol2(2:0] Q OOOJ] 110 | (L]
Encode First symbol3[2:0] 0]
Symbol Are There Enough Ei old act
¢ NO NO | Redundant Bits yebeld. — encode
For Fifth
Encode Secord Symbol 2 000 111 100 110 ——» 010111100
Symbol
¢ Are There Enough Figure 9: Post-layout simulation result of the encoder
Encode Third Redundant Bits | YES | Encode Fourth
Symbol For Fourth Symbol
Symbol ?
unit: 101 ns
Figure 5: FSM of the 3-2 encoder design PRI - (PRSPPI 1L PSP PRSP i (. TN ..
= Gl
]l B __§ B__§ B__§ 3 I
data_in([8:0] 0_+ 0_0010_1100 0_1001_1010 E 0_0010_0000 1_100;
symboll[2:0] ﬂf«] ~—_ /00 \
symbol2(2:0] f* ] 100 ) T 10
symbold[2:0] 000 2 100 jal 000
2, 2 count syubold(2:0] DD? g} 110 i) 130 T 100 b2l 00
symhold_ac
Redundant l 4 4 sy‘lbu]j[Z:ElT ] 1 1L W
3/ Bits Counter 2’/ Right | 5 L-Ef ; Z; s decodi 2 é N —
endata - [ Shifter 7~>| Shifter| Symbol 000101100Te> 000 100 100 110
3

ode
010011010 — 000 000 000 100 111

Figure 6: Single-symbol decoder Figure 10: Post-layout simulation result of the decoder



