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ABSTRACT

A high-speed phase-adjustable ROM-less direct digital
frequency synthesizer (DDFS) employing trigonomet-
ric quadruple angle formula is presented. The spectral
purity is better than -130 dBc worst case spur. The
resolution is up to 13 bits. Most important of all is
that the output sinusoidal frequency is more than 40
MHz which is far more than the 32 MHz requirement
of Korean PCS, GSM, and Bluetooh. Neither any scal-
ing table nor error correction tables are required. The
maximum error is mathematically analyzed. The word
length of each multiplier is carefully selected in the dig-
ital implementation such that the error range is limited
and the resolution is preserved.

1. INTRODUCTION

Ever since the low-cost RF CMOS technology becomes
the challenger of its conventional discrete counterpart,
the spectral quality of the frequency synthesizers in
a single chip solution has been demanded to possess
better purity. Direct digital frequency synthesizers
(DDFSs) are very much preferred in some modern
communication systems owing to their advantages over
PLL-based solutions, e.g., fast settling time, sub-Hertz

frequency resolution, continuous-phase frequency switch-

ing and low phase noise [4]. The bottleneck of the
DDFS method is the generation of a pure sinusoidal
output. Many prior works were proposed to resolved
this problem, including ROM-based lookup tables [1],
[2], [3], [4], [5], complex pipelined structure with a
low FSM and a ROM [6], or scaling and error correc-
tion tables [7]. All of the ROM-based solutions suffer
from ROM’s intrinsic drawbacks which are slow speed,
large area, and high power consumption. Sodagar et
al. proposed a ROM-less DDFS by using 2nd-order
parabolic approximation [7]. However, in order to re-
duce the conversion error, a scaling table and an error
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correction table (or generator) are needed. It, thus,
not only deteriorates the speed performance, but also
affect the resolution of the output word length. Al-
though the DDFS proposed by [8] resolved most of
the mentioned problem, it could only generate a very
low frequency output, i.e., 5 KHz sine wave which is
not adequate for any wireless applications. In this pa-
per, we propose a novel ROM-less design for DDFSs,
which utilizes trigonometric 46 formula to attain the
smaller error range. A pipelining methodology and
tunable phase selections are adopted to enhance the
processing speed as well as the throughput. The out-
put is 13-bit resolution and the worst case spur is -130
dBc, while the output frequency is 40 MHz.

2. HIGH-SPEED ROM-LESS DDFS

A basic idea to carry out the ROM-less DDFS is to
utilize the trigonometric quadruple angle formula such
that the irregularity of the scaling and error correction
difficulties in [7] will be eliminated. In addition, the
upper bound of the error range can be analytically
solved.

2.1. Trigonometric 1st-order 46 approximation

The quadruple angle formula can be re-arranged as
the following equality.

cos4f = 2cos’>20 — 1 =1 —8sin” §(1 —sin?4) (1)

Since the range of 48 is limited in [0, §] [4], the range
of 6 is [0, §]. Thus, sinf ~ 6. Eqn.(1) becomes
cosd4f ~1—86%(1—-6%), 0<0<

2)

ool

Notably, the maximum amount of error occurs at 90°.
In order to minimize the amount of error, the upper
bound must be chosen to be smaller than § = 0.3927.
This bound should also be easily converted into a digi-
tal representation which will make the physical imple-
mentation feasible. The simulink of MATLAB is em-
ployed to find such a proper bound which will meets
the requirement of at least 12-bit output resolution.



The simulation results suggest a nice selection at 3135

8192
with an error < 2.4 -107*. Hence, we re-define our
1st-order approximation method, called TA1(z) (1st-

order trigonometric approximation), as follows.

< 3135

20 3

TAL(z) =1 — 82%(1 — 2?), < 3192

0<zx

Fig. 1illustrates the actual cosine function and TA1(z),
while the difference of these two functions, which is
TA1(z) - cosb, is given in Fig. 2. The maximum er-
ror attained graphically is 13 - 10~2 which is smaller
than 15.625-107% = 5. It indicates that the 1st-order
approximation has at least 6-bit resolution.

Since the error function, errl(z) = TA1l(z) -
cosf, is not a good function to be implemented dig-
itally. We propose to use a polynomial function to
fit the error function. The steps are summarized as
follows.

1). Keep dividing TA1(z)(1 - TA1(z)) by 2 until the
maximum of TA1(z)(1 - TA1(z)) is close to the
maximum of errl(z).

2). A scaling factor, K, is chosen to further reduce
the error between TA1(z)(1 - TA1(z)) and cosz.
The K must be digitally representable. Besides,
the final error must be less than 2% =2.4-10"*
to ensure the resolution.

The optimization procedure is carried out by
simulink of MATLAB. The final optimized error func-
tion becomes as follows.

errl(z) K -(0.5)*TAl(z) - (1 — TAl(z)), (4)

TAl(z) — cos,

Q

where K = (0.84375)19 = (0.11011),, 0 < z <

3135
8192 and 0 S 0 S %

2.2. 2nd-order approximation

A simple thought to further reduce the amount
of error between the cosine function and the approx-
imation equation is to utilize a 2nd-order difference
method, which is given as follows.

< 3135

TA2(z) = TAl(x) —errl < —
(@) = TAL(@) - errl(s), 0<w < T,

()
We attain the maximal amount of error from the fig-
ure is 0.8 x 107* < 1.22 x 107* = i3, we conclude
that the output resolution of our proposed method is
guaranteed to be 13 bits, which is more accurate any
prior work. In other words, a trigonometric 46 approx-
imation with error correction for sinusoidal output is
attained.

2.3. Analytic solutions

It is also an interesting thing to find out where
the maximal error is. We represent the difference be-
tween TA2 and cosine as another error function.

err2 = TA2(z) — cosd,
whereogxg%,ogagg (6)
TA2(z) = TAl(z) — A-TAl(z)(1 — TAl(=)),
where A = 0.84375 - (0.5)* (7)
TAl(z) = 1-8z%(1-2?) (8)

By substituting Eqns.(7) and (8) into Eqn.(6),
we obtain the entire err2. Then, we take the first order
derivative of err2 and solve the solution given that
err2 = 0 to attain the following equations.

err2 = TA2 (z) — (cos) =0,
0 = (322% —162)(16Az* — 16422 + A+ 1) — (cos8)’
0 = (322 —16z)(16Az* — 1642 + A+ 1) +
81927 i
sinf, where § = £221

6270

By graphically solving the two terms in Eqn.(9)
as shown in Fig. 3, there are to intersections between
the two curves which denotes where the maximum er-
rors are located.

2.4. System design by pipelining

Fig. 4 is a typical implementation of DDFSs in
prior works. The slow and large ROM not only occu-
pies a significant portion of the chip (or board) area,
it also degrades the speed. If a direct implementation
of Eqn. (7), (8), and (9) is adopted, a large number of
multipliers are required which will result in low speed
and large area. Hence, We propose our pipelining dig-
ital implementation basing upon the proposed 46 ap-
proximation method in Fig. 5. Besides the pipelining
design, the phase computation is also simplified.

Phase Accumulation : A bottle-neck in the early
stage of the DDFS is the generation of phase square
in Eqn. (2) in which the resolution of the phase is 13
bits. It will be a disaster to use either a squarer or a
multiplier at this stage. We decompose the 13 bits into
6 high bits (denoted as H) and 7 low bits (denoted as
L).

(HL)>=H?*-2"“ 4+ 1>+2-H-L-27 (10)

Notably, both of the H? - 2'* and L? are 14-bit terms,
which can be calculated by combinational logic with-
out using any long adders. Hence, the result in Eqn.
(10) can be generated by a single adder.

Phase Adjustability : Eqn. (3) tells that the max-
imum count of the phase input is 3135 (= 12 bits).
Meanwhile, the resolution of the design is proved to be
13 bits. Hence, the maximum count of the phase_acc

)



in Fig. 5is 6270. The 10-bit input at phase_displace is
fed by a digital PLL (not shown) such that the phase
comparison and adjustment can be carried out.

phase_acc

phase_displace =«
6270 x 4

fout = 6270 57 (11)

'fclock:a 0=

where f,,; is the frequency of the output sinusoidal
waves, and feock 18 the system clock. As soon as there
is a phase-adjusted command, the “dis” at the Fig. 5 is
pulled high to add “phase_displace” and “phase_acc”,
which is shown in Fig. 6.

3. SIMULATION AND IMPLEMENTATION

Modelsim of Mentor and MATLAB of Mathworks are
the S/W tools to proceed the system-level simulations.
The design in Fig. 5 is coded by RTL Verilog which is
then simulated by Modelsim. The RTL code is then
synthesized by SYNOPSYS and post-layoutedly ver-
ified by TimeMill and PowerMill. Fig. 6 shows the
transition from a 5.55 MHz sine output to a 41.66 MHz
O/P given a worst condition (SS Model, 0°C, feiock =
166 MHz). Meanwhile, the decimal output data in
a 12-bit format are collected. The FFT command of
MATLAB is executed to attain the spectrum as shown
in Fig. 7, which illustrates the spurious performance
of the proposed method is as high as -130 dBc. It is
far better than any prior works. Table 1 summarizes
the performance of our work and prior methods.

resolution spurious

[1] 10 bits -55 dBc

[4] 12 bits -55 dBc
[5] 12 bits -98.75 dBc

[6] 12 bits -70 dBc
[7 12 bits -62.8 dBc
ours 13 bits -130 dBc

Table 1: Performance comparison

We, then, follow the standard cell-based design
flow to implement the our work. Fig. 8 is the lay-
out of the proposed design. Table 2 summarizes the
characteristics of the chip.

fclock 166 MHz
max. fout 41 MHz
SFDR -78 dB
THD -41 dB
avg. power 16.774 mW
resolution 13 bits
core area, 1118.8%x1118.8 um?
gate count 13259

Table 2: Characteristics of the proposed DDFS

4. CONCLUSION

In this paper, we have presented a novel implementa-
tion utilizing pipelining to carry out a ROM-less DDFS
which is based on the quadruple angle equality equa-
tion. Not only are the spurious tones reduced, the
2nd-order error correction has been simulated to jus-
tify the capability of subsiding the noise power of the
harmonics.
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Figure 4: the architecture of prior ROM-based DDFSs

Figure 5: the proposed ROM-less DDFS
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Figure 6: Post-layout simulation results
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Figure 7: spurious performance of the proposed DDFS
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Figure 8: measured spectrum of the proposed DDFS



