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ABSTRACT

A ROM-less direct digital frequency synthesizer (DDFS)
employing trigonometric quadruple angle formula is
presented. The spectral purity is better than -130 dBe
worst, case spur. The resolution is up to 13 bits. Nei-
ther any scaling table nor error correction tables are
required. The maximum error is mathematically ana-
lyzed. The word length of each multiplier is carefully
selected in the digital implementation such that the
error range ig limited and the resolution is preserved.

1. INTRODUCTION

Ever since the low-cost RF CMOS technology becomes
the challenger of its conventional discrete counterpart,
the spectral quality of the frequency synthesizers in
a single chip solution has been demanded to possess
better purity. Direct digital frequency synthesizers
(DDFSs) are very much preferred in some modern
communication systems cwing to their advantages over
PLL-based solutions, e.g., fast settling time, sub-Hertz

frequency resolution, continuous-phase frequency switch-

ing and low phase noise [4]. The bottleneck of the
DDFS method is the generation of a pure sinusoidal
output. Many prior works were proposed to resolved
this problem, including ROM-based lookup tables [1],
(2], 13], [4], [5], or scaling and error correction tables
[6]. All of the ROM-based solutions suffer from ROM’s
intrinsic drawbacks which are slow speed, large area,
and high power consumption. Sodagar et al. proposed
a ROM-less DDFS by using 2nd-order parabolic ap-
proximation [6]. However, in order to reduce the con-
vergion error, a scaling table and an error correction
table (or generator) are needed. It, thus, not only de-
teriorates the speed performance, but also affect the
resolution of the output word length. In this paper,
we propose a novel ROM-less design for DDFSs, which
utilizes trigonometric 48 formula to attain the smaller
eITOr range.
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2. 44 ANGLE APPROXIMATION

A basgic idea to carry out the ROM-less DDFS is to
utilize the trigonometric quadruple angle formula such
that the irregularity of the scaling and error correction
difficulties in [6] will be eliminated. In addition, the
upper bound of the error range can be analytically
solved.

2.1. Trigonometric 1st-order 48 approximation
The double angle equality is well known as
cos28 = 2cos’f —1=1—2sin?9 (1)

The Eqn.(1) can be re-arranged as the following
equality if # is replaced with 26.

cosdf = 2cos’20-1 (2)
= 1—8sin®d(1 —sin’ 8) (3)

Since the range of 44 is limited in [0, %] (4], the

range of 4 is {0, %] Thus, siné = 8. Eqn.(3) becomes

0<i<z @

Fig. 1 shows the comparison of true cosine func-
tion and Eqn.(4). Notably, the maximum amount of
error occurs at 90°. In order to minimize the amount of
error, the upper bound must be chosen to be smaller
than % ~ 0.3927. This bound should also be easily

converted into a digital representation which will make
the physical implementation feasible. The simulink of
MATLAB is employed to find such a proper bound
which will meets the requirement of at least 12-bit out-
put resolution. The simulation results suggest a nice

cosdf =~ 1 —86%(1 — 67),

3135
selection at FITT] with an error < 2.4 x 10~%. Hence,

we re-define our 1st-order approximation method, called
TAl(x) (lst-order trigonometric approximation), as
follows.

3135

TALz) =1—8z*(1 - %), 0<z< o (5
@ =1-821-7), 0Sz<s (9)
Fig. 2 illustrates the actual cosine function and
TA1(z), while the difference of these two functions,
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imum error attained graphically is 13 x 10~3 which is
smaller than 15.625 x 1072 = lﬁ It indicates that the
1st-order approximation has at least 6-bit resolution.
Fig. 4 produced by MATLAB simulation shows that
the worst case spurious is -84 dBc by using the TA1
approximation, which is no error correction at all.
Since the error function, err(z) = TA1(z) - cos®,
is not a good function to be implemented digitally. We
propose to use a polynomial function to fit the error
function. The steps are summarized as follows.

1). Keep dividing TA1{z)(1 - TA1(z)) by 2 until the
maximum of TA1(z)(1 - TAl(zx)) is close to the
maximum of err(z).

2). A scaling factor, K, is chosen to further reduce
the error between TA1(x)(1 - TA1(z)) and err(z).
The K must be digitally representable. Besides,

1
the final error must be less than o = 2.4x10™*
to ensure the resolution.
The optimization procedare is carried out by

simulink of MATLAB. The final optimized error func-
tion becomes as follows.

K (0.5)*TA1(z) - (1 — TAL(z)), (6)
TAl(z) — cos8,

errl(z) =

2

where K = (0.84375); = (0.11011),0 < 8 < %

1
and0 <z < % Fig. 5 illustrates the tuned errl(x)

is very close to the err(z) function, which is TA1(z) —
cosf.

2.2. 2nd-order approximation

A simple thought to further reduce the amount of error
between the cosine function and the approximation
equation is to utilize a 2nd-order difference method,
which is given as follows.

3135
0<ze<

TA2(z) = TAl(z) — errl(z), <z2 Hoy (N

Fig. 6 shows (TA2 - cosine) graphically. We attain
the maximal amount of error from the figure is 0.8 x

1
1074 <1.22x 1074 = 9137 We conclude that the out-

put resclution of our proposed method is guaranteed
to be 13 bits, which is more accurate any prior work.
In other words, a trigonometric 48 approximation with
error correction for sinusoidal output is attained.

2.3. Analytic solutions

It is also an interesting thing to find out where the
maximal error is. We represent the difference between
TA2 and cosine as another error function.

err2(z) = TA2(z) — cosb,
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where0<z< —, 0<@< = (8)

8192 2

TA2(z) = TAl(z) - A- TAl(z)(1 — TAl(z)),
where A = 0.84375- (0.5)* (9)

TAl(z) = 1-8z%1-z%) (10)

By substituting Eqns.(9) and (10} into Eqn.(8),
we obtain the entire err2(z). Then, we take the first
order derivative of err2(z) and solve the solution given
that err2 (z) = 0 to attain the following equations.

err2 (z) = TA2 (z) — (cos®) =0,
0 = (322° - 167)(1642" — 16422+ A+ 1)
—(cos )’
0 = (322° —167)(1642" — 16422 + A+ 1)
81927 | 81927
+—_"627(] sin@, where 8§ = 0 (11)

By graphically solving the two terms in Eqn.(11)
as shown in Fig. 7, there are two intersections between
the two curves in which the solid line denotes the first
term, while the dash line is the second term. The
locations of the two intersections exactly match the
maximum and minimum of the curve in Fig. 6, re-
spectively. This phenomenon verifies that our method
indeed provide a high resolution result.

2.4. Digital system implementation

Fig. 8 is a typical implementation of DDFSs in prior
works. The slow and large ROM not only occupies a
significant porticn of the chip (or board) area, it also
degrades the speed. We propose our digital imple-
mentation basing upon the proposed 44 approximation
method in Fig. 9.

3. SYSTEM-LEVEL SIMULATION

Modelsim of Mentor and MATLAB of Mathworks are
the S/W tools to proceed the system-level simulations.
The steps that we adopted are summarizes as follows.

(1). The design in Fig. 9 is coded by Verilog which
is then simulated by Modelsim. The decimal output
data in a 12-bit format are collected. Fig. 10 shows
the result of this part of work.

(2). The collected data are fed into MATLARB. The
FFT command is executed to attain the spectrum.

Fig. 11 illustrates the spurious performance of
the proposed method is as high as -130 dBc, which is
far better than any prior works. Table 1 summarizes
the performance of our work and prior methods.

We, then, implement the proposed design by
Altera APEX20KE FPGA board and Analog Device’s
AD1854 DAC. This DAC is for audio application and
the input is serial. The performance is measured by
Tecktronix TDS 680B oscilloscope. Fig. 12 shows the
measured sprectum of the proposed synthesizer.
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] 10 bits -55 dBe
4] 11 bits -55 dBc
5] | 12bits |-98.75 dBc
[6* | 10bits | -62.8 dBc

ours* | 12 bits] | -130 dBc

Table 1: Performance comparison (*:  ROM-less
method, §: Since there is no 13-bit DAC, we
use 12-bit resolution in our simulation.)

4. CONCLUSION

In this paper, we have presented a novel method uti-
lizing the quadruple angle equality equation to reduce
the sputious of the DDFSs. The 2nd-order error cor-
rection has been simulated to justify the capability of
subside the noise power of the harmonics.

5. REFERENCES

(1] G. Van Andrews, ef al., “Recent progress in
wideband monolithic direct digital synthesizers,”
IEEE MTT-8 Inter. Microwave Symp. Digest,
vol. 3, pp. 1347-1350, 1996.

[2] M. J. Flanagan, and G. A. Zimmerman, “Spur-
reduced digital sinusoid synthesis,” IEEE Trans.
on Comm., vol. 43, no. 7, pp. 2254-2262, July
1995.

[3] V. F. Kroupa, V. Cizek, J. Stursa, and H. Svan-
dova, “Spurious signals in direct digital frequency
synthesizers due to the phase truncation,” IEEE
Trans. on Ultrasonics, Ferroelectrics, and Fre-
quency Control, vol. 47, no. 5, pp. 1166-1172, Sep.
2000.

[4} G. W. Kent, and N.-H. Sheng, “A high purity,
high speed direct digital synthesizer,” 1995 {9th
IEEE Inter. Frequency Control Symp., pp. 207-
211, 1995.

5] R. Larson, and S.-L. Lu, “Interpolation-based
digital quadrature frequency,” 13th Annual IEEE
Inter. ASIC/S0C Conf., pp. 48-52, 2000.

(6] A. M. Sodagar, and G. R. Lahihi, “A novel ar-
chitecture for ROM-less sine-output direct digi-
tal frequency synthesizers by using the 2nd-order
parabolic approximation,” 2000 IEEE/ETA Inter.
Frequency Control Symp. and Ezhibition, pp. 284-
289, 2000.

67

—— &1 (8]
— e

40 5
degree
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Figure 4: spurious spectrum of TAl(z)
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Figure 6: TA2(z)
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Figure 8: the architecture of prior ROM-based DDFSs
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Figure 9: our proposed ROM-less DDFS
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Figure 12: measured spectrum of the proposed DDFS
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