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ABSTRACT

In new generations of micropracessors, the superscalar ar-
chitecture is widely adopted to increase the number of in-
structions executed in one cycle [2]. The division instruc-
tion among all of the instructions needs more cycles than
the rest, e.g., addition and multiplication. It, then, makes
division instruction an important CPI (Cycles Per Instruc-
tion) figure for modern microprocessors. In this paper, a
radix 16/8/4/2 divider is proposed which uses a variety of
techniques, including operand scaling, table partitioning,
and table folding, to increase performance without the cost
of increasing complexity.

1. INTRODUCTION

Digit recurrence is one of the oldest classes of high-
speed division algorithms. A significant amount of litera-
ture has been proposed regarding algorithms, implemen-
tations, and techniques. Although prior algorithms in-
creased division performance, many side effects and draw-
backs were not considered, e.g., adjustment of remainder
when used in integer division. In this paper, we employ
a high-radix, 16/8/4/2, division method to reduce the re-
quired cycles for the division, while keep the hardware
complexity in control. The major difference is the utiliza-
tion of the table partitioning and folding.

2. DIGIT-RECURRENCE THEORY

The generalized division is defined as: z = ¢-d + rem,
where z is called dividend, d is divisor, ¢ is quotient, and
rem is remainder. In the digit recurrence division algo-
rithm, 1 to b bits of quotient digit can be obtained every
iteration in a radix-2° digit recurrence division. In other
words, b bits of quotient can be obtained every iteration.
In [1], the digit recurrence algorithm is defined as shown:

wlj+1] =7r-wlf] ~d- gj41, (1)

where w([j + 1] is the residual of the (54 1)th iteration, r is
the radix, and g;41 is the quotient digit generated in the
(j+1)th iteration. In aradix-r, r=2% division, the quotient
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digit set is defined as q¢; € D, = {—a,...,—1,0,1,...,a}.
Since [|Dq|] > 7, it uses more than » numbers to present
the quotient digits, which make this quotient representa-
tion form to be a redundant form. Besides, the restriction
ofais: a > [%'l. In Eqn. (1), the quotient digits are gener-
ated in every iteration. Hence we can define the quotient-
digit selection function as g;+1 = SEL(w[j], d), where the
SEL() function can be simplified as a table lookup func-
tion.

3. MIXED RADIX-16/8/4/2 64B/32B
INTEGER DIVIDER

In [3], a mixed radix-8/4/2 integer divider was pro-
posed of which performance is better than that of a normal
radix-4/2 integer divider [4]. However, it paid the price of
increasing the complexity of hardware, and the nearly dou-
bling total area of the divider. In this paper, the radix will
be raised up to 16 in the division algorithm to retire more
bits of quotient per cycle. Nevertheless, the complexity of
the hardware will be retained to a similar degree by ap-
plying several methods, including operand prescaling [6],
table partitioning [7], and table folding [8].

3.1. operand scaling

In high radix dividers, the cycle time is generally de-
termined by the quotient-digit selection operation which
is basically a table lookup operation. The complexity of
quotient selection function increases exponentially if the
radix increases linearly. Consequently, it results in a long
table lookup time. Operand scaling is a better alternative
to avoid the long table lookup time.

The maximal overlap between quotient digits appears
when the divisor is the maximum. That is, the maximal
amount of overlap occurs when a divisor d is normalized
and it approaches to 1. This observation leads to the con-
cept of divisor prescaling [6]. In the first step of the scaling
method, the divisor is prescaled by a factor M so that the
scaled divisor zis: 1—a < z = M-d < 1+ 3, where o and
B are chosen such that the scaling factor, Si,¢ € {0..6},
is identical in all divisor intervals and the quotient-digit
selection is independent of the divisor. Besides, the value
of M should be chosen to minimize (a+ ) which produces
the smallest achievable range of z. In order to preserve the
value of the quotient, three alternative ways of perform-



ing the scaling were proposed [5]. The scaling factor and
scaled divisor range is tabulated in Table 1. Operand scal-
ing process produce a scaled estimated residual: §, which
is generated as shown in Figure 1. In Figure 1, the “esti-
mated residual” is chosen from the first 7 bits form w[j]
in Eqn. (1).

[123,124) 66 [8118,8184)
[121,122) 67 [8107,8174)
[119,120) 69 [8211,8280)
[117,118) 70 [8190,8260)
(115,116) 71 [8165,8236)
[113,114) 72 [8136,8208)

[122,123) 67 [8174,8241)
[120,121) 68 [8160,8228)
[118,119) 69 [8142,8211)
[116,117) 70 [8120,8190)
[114,115) 72 [8208, 8280)
[112,113) 73 [8176,8249)

[111,112) 74 [8214,8288) | [110,111) 74 [8140,8214)
[109,110) 75 [8175,8250) | [108,109) 76 [8208,8284)
[107,108) 76 [8132,8208) | [106,107) 77 [8162,8239)
[105,106) 78 [8190,8268) | [104,105) 78 [8112,8190)

[103,104) 79 [8137,8216) | [102,103) 80 [8160,8240)

[101,102) 81 [8181,8262) | [100,101) 82 [8200,8282)
[99,100) 82 [8118,8200) | [98,99) 83 [8134,8217)
[97,98) 84 [8148,8232) | [96,97) 85 [8160,8245)
[95,96) 86 [8170,8256) | [94,95) 87 [8178,8265)
[93,94) 88 [8184,8272) | [92,93) 89 [8188,8277)
[91,92) 90 [8190,8280) | [90,91) 91 [8190,8281)
[89,90) 92 [8188,8280) | [88,89) 93 [8184,8277)
[87,88) 94 [8178,8272) | [86,87) 95 [8170,8265)
[85,86) 96 [8160,8256) | [84,85) 97 [8148,8245)
[83,84) 98 [8134,8232) | [82,83) 99 [8118,8217)

[81,82) 101 [8181,8282)
[79,80) 103 [8137,8240)
[77,78) 106 [8162,8268)

[80,81) 102 [8160,8262)
[78,79) 104 [8112,8216)
[76,77) 107 [8132,8239)

[75,76) 109 [8175,8284) | [74,75) 110 [8140, 8250)
[73,74) 112 [8176,8288) | [72,73) 113 [8136,8249)
[71,72) 115 [8165,8280) | [70,71) 116 [8120,8236)
[69,70) 118 [8142, 8260) [68,69) 120 [8160,8280)
[67,68) 121 [8107,8228) | [66,67) 123 [8118,8241)

[65,66) 125 [8125,8250) | [64,65) 127 [8128,8255)

. 8192 - (1-a), _ 8192 - (1-a),
128 64-Mg "G 1284 64-Mgig0 ([ g))
[127,128) 64 [8128,8192) | [126,127) 65 [8190, 8255)
[125,126) 65 [8125,8190) | [124,125) 66 [8184,8250)

Table 1: Scaling factor and scaled divisor range.
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Figure 1: The generation of scaled estimated residual: §
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3.2. table sharing algorithm

The quotient-digit selection function in radix-8 divi-
sion has been proved to be the bottleneck in each iteration
[3]- Hence the radix-16/8/4/2 integer division will be in-
feasible unless a simplified quotient-digit selection function
is developed. A modified version of table partitioning al-
gorithm [7], called “table sharing”, is presented to simplify
the digit selection process. The table partition method in
[7] arranged the entries in a non-mergable manner. We
simply reorder the rows to place the negative entries of
Lo. on top half of the table and the positive ones on the
bottom. Hence, the modified table possesses a feature that
is mergable for different radices. Moreover, the merge of
a total of the radix-2, radix-4, radix-8, and the radix-16
quotient selection tables reduces the area.

3.2.1. quotient digit decomposition

In the proposed scheme, the maximally redundant quo-
tient digit set is chosen for radix-16 division and decom-
posed into four components as follows:

gG+1 = qhhtang + Qe T
an.n € {—8,0,8}, qr,i € {~4,0,4},
ai,n € {—2,0,2}, qi; € {-1,0,1}, (2)

where ¢;11 € {—15, —14,...,0,...,14, 15}, and gqn,n, qn,
qi,r, and gi,; are tabulated as Table 2.

Lol Hil g1 ana] ang] @4 qui

( -16.5 -15) -15 -§ -4 -2 -1
145 -14 -14 g -4 -2 0

-13.5 -13 -13 -8 -4 0 -1

-12.5 -12 -12 -8 -4 0 O

-11.5 <11 -1 -8 o -2 -1

-10.5 -100 -1 -§ O -2 0

95 -9 -9 -8 0 0 -1

85 -8 -8 -§ O 0O O

( 7 -1 -1 o -4 -2 -1
65 -6 -6 O -4 -2 0

-5.50 -5 -5 o -4 g -1

45 -4 -4 0o -4 0o O

35 -3 -3 o o -2 -1

25 -2 -2 0 O -2 0

15 -1 - o o o -1

16¢ 84 44 2< 05 -0 -0 O O O O
o.Lj 1 1 o o o 1

1. 42 2 o o 2 o0

25 3 3 O O 2 1

35 4 4 0o 4 0 o0

4.5 5 5 O 4 0o 1

55 6 6 o 4 2 0

\ 6.5 T 717 0o 4 2 1
75 & 8§ 8§ O 0 O

85 9 g 8§ o 0o 1

95 10 10 8§ o 2 0

105 111 111 g o 2 1

115 12 12 8 4 0 O

1258 13 13 8§ 4 0 1

135 14 14 8 4 2 0

145 16/ 153 § 4 2 1

Table 2: The decomposition of g;41 for 16/8/4/2 radix di-
vider.



According to Table 2, the selection intervals for gj41
in radix-16, radix-8, radix-4, and radix-2 divisions are in-
cluded and tabulated in Table 2, as indicated by the 4
braces, respectively. Besides, Lo. and Hi. in Table 2
denote the lower bound and the upper bound of the the
shifted estimated residual, respectively. Notably, by in-
specting Table 1, the bounds of the scaled shifted resid-

ual, §, are derived form |wj]| < 8288 and the correspond-

— 8192
ing 2-bit truncation error. Namely, |—7 - Zigz —-27% <
g < |r- 82&] Nevertheless, since the quotient-digit ta-

ble is shared by different radices, the highest order digit
will be incorrectly enabled if the value of § is close to the
bounds as illustrated in the first and last rows indicated
by the braces in Tables 2. Fortunately, this can be fixed
easily later at the quotient-digit assimilation stage where
Gh,h, Gh,is ik, a0d g;; Te-compose the quotient digits.

3.3. table folding

By inspecting Table 2, the entries of the top half are
identical to the opposite ones in the bottom half. It allows
us to simply implement only the positive half. Accord-
ingly, the proposed scheme needs only 6 bits, besides the
common sign bit, as the input to the quotient-digit selec-
tion table, including 5 integer bits and 1 fractional bit of ¢,
in contrast to 11 bits required in the radix-8 division pre-
sented [3]. Thus, a total of 7 bits, § = yYsyaysyay1 Yoy—_1
are used to derive g} 4, qn s, G, 4 Ghons Ghas @15 a0d
qf,,. Then, we get

q;f,h = Q)'Z,l = Ql}th = q;ft =Ys,
qh,h = Yays + Yay1Yoy-1 + Yaysy2y1yoy-1,
Ghy = Jaysy2 + Gayeds + Gayeio + Gayef-1 +
Jagey1Y0y—1 + YaYsGYeYrYoy-1,
ahn = FayiFo + FayrF-1 + Jaysyays + Fafiyoy-1 +
YaPaY21YoY-1,
Gy = TaGoyr + JayoP-1 + Jaysyavnyoy-1 +

Yaysy2¥1oy-1 3)

Notably, all the four radices can share the expressions
given in Eqn. (3) without any changes. The scenario re-
quiring many quotient selection tables for different radices
appearing in the prior designs no longer exists.

3.4. quotient digit assimilation unit

The quotient digit assimilation unit has the task of
performing the assimilation of the selections q},, B qﬁ,,l, qf,h,
and qf,, into the single digit gj+1 = gn - 4 + @1, where g
is formed by assimilating qﬁbyh and qfh,, and ¢ is created
by assimilating qll,h and ql’,,. Meanwhile, the assimilation
unit can be shared by different radices. The g, and ¢; are
functions of gf », @ s @l'ny 915 Ghons Ghat> Aps a0d gfy for
radix-16 through radix-2 divisions as shown in Table 3.

The 38-bit CSA in Figure 2 is fed with the shifted
residual, —qnh - d, —qni - d, —qur - d, —qu - d, 7 x we[j], and
r x ws[j] to generate we[j + 1] and ws[j + 1], where gry +
qnt = qn, and qin +qu = . Notably, gra, qin, gnt, qu must
be numbers of 2’s power. For instance, a pre-computation
of 3-d can be decomposed into 3 -d = (2° + 2')d in one
pass through the CSA and saved in registers right after the
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. bit 2 . bit 0
d bit 1
radi¥ | (\sB) i (LSB) J
qr QIh 1 qz,h ng,z
16 7 7
q i) ; ai.n qlz,z J
g |9 i Ghn t+ dhy q.n
13 7 0
& ql;il ‘1111 T 1 T
4 L9 9 q;w,h +dn:t i Ghn T Ohg T
I
q g 0 0
1 7 7 7 0
9 | @i | Ghn +qha+ ety
h
@ qy 0 0

Table 3: generation of g, and ¢; for different radices

divisor d is scaled in the first cycle. Multipliers then will
not be required in the high radix division implementations.

Note that the expressions of ¢ and ¢, for different
radices are identical except for the cases that the higher
order quotient digit is incorrectly set to 1 when the value
of § is close to the bounds as illustrated in the boundary
rows of each radix in Table 2. The complete scheme for the
mixed radix 16/8/4/2 64b/32b integer divider is presented
in Figure 2.

Divisor d
32

Dividend x
64

37bit WC h 74 hilf_l——‘

Scaling Factor
Generation

7 Sealing Factor

2 o ST
L
77 38
[ Residual Scaling 37

7

One’s Complementor

! 6

4, 4., Selection! [¢,7, Selection| [g7, Selcction] |[4/, Selection
37biMUX Function || Function || Function Function
‘Table Table Table ‘Table
Radix
‘ li f ti v ¥ i electior]
4, Assimilation Unit q, Assimilation Unit
L %
A 3
37 bit MUX 37 guxd
37 4,xd
g, Xd 37
-gyxd 37
d
n/f 38 bit CSA
[_;_ ]
35 bit On-the-Fly Conversion | |Remainder Generator
wljtl) Y31 38—

33 | 32 |

Remainder

wslj+1]

Figure 2: The architecture of the radix 16/8/4/2 64b/32b
integer divider.

4. SIMULATION AND IMPLEMENTATION

The chip is designed by TSMC (Taiwan Semiconduc-
tor Manufacturing Company) 0.35 um 1P4M technology,
and simulated by Cadence SDF simulation tools. The sim-
ulation result is shown in Figure 3. The highest working
clock of this radix 16/8/4/2 64/32 bit divider is 76.9 MHz.
Figure 4 is the DIE photo of the proposed divider. Table 4



demonstrates the comparison of execution cycles for inte-
ger division of current X86 microprocessors and our design.
Our design possesses the advantage of cycles to execute a
division instruction. Table 5 is the comparison of mixed
radix-4/2, mixed radix-8/4/2, and our design.

input 32-bit
divisor

chip reset
(_reset =0)

start division operand

dividend (start = 1)

input 64-bit ‘

select input dividend
(wselect = 1)

select input divisor
(write = 1)

store operand in registers
(write = 1)

select output quotient
(wselect = 0)

select output remainder

division operation
(wselect = 1)

(ok=1)

read 32-bit remainder
from registers

read 32-bit quotient
from registers

Figure 3: The simulation result of the proposed divider

Pentium| AMD| Cyrix 6x86 [3]| Our
Pro Athlon MII 1998
Integer) 196 | 47.02| 4513 | 18-3 13-3
division|

Table 4: Comparison of modern microprocessor integer di-
vision cycles and proposed mixed radix-16/8/4/2

divider.
Mixed Radix{ Mixed Radix- QOurs
4/2 [4] 8/4/2 [3]
Area by
SYNOPSYS 9984.75 17468.76 19996.42
Number 23-2 18-3 13-3
of cycles
Clock rate 33 MHz 66 MHz 76.9 MH7

Table 5: Comparison of mixed radix-4/2, mixed radix-
8/4/2, and proposed mixed radix-16/8/4/2 di-

vider.

5. SUMMARY

The division performance of the integer divider can be
improved by either reducing the division cycles or decreas-
ing the time in each iteration without adding significant
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2204 um

Figure 4: DIE photo of the radix 16/8/4/2 64b/32b inte-
ger divider.

complexity in hardware. In this paper, we have proposed
a novel scheme to meliorate the performance of integer di-
vision. What we present employs operand scaling, table
folding, and table partitioning techniques to realize the
mixed radix 16/8/4/2 quotient selection tables.
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