Design and Performance Verification of ALUs for 64-bit
8-lssue Superscaler Microprocessors Using 0.25um CMOS Technology

Chua-Chin Wang, and Sheng-Hua Chen

Department of Electrical Engineering,
National Sun Yat-Sen University
Kaohsiung, Taiwan 80424
Email: ccwang@ee.nsysu.edu.tw

ABSTRACT

In this paper, we present designs of a set of four
non-homogeneous ALUs which can be employed in the
next generation 64-bit x86-compatible microprocessors.
The entire design is realized by synthesizable Verilog
RTL (register-transfer level) code. The gate level code
is generated by Synopsys using COMPASS 0.6um
1P3M cell library, and UMC 0.25um 1P5M cell library.
The correctness of the functionality of the individual
ALU is verified in both RTL code and gate level code
after the synthesization. :

1. INTRODUCTION

The major functions of ALUs are aimed at the
executions of fixed-point integer instructions and logic
operations. We tend to design four non-homogeneous
ALUs for a next generation 64-bit octal-issue x86-
compatible CPU with superscaler and pipelining
functions [10], [5]. The major critical components
include 64-bit adders, a 64x64 multiplier, a 128/64
divider, 64-b barrel shifters, and logic units, [2], are all
realized by Verilog synthesizable RTL code. Owing to
the demand of superscaler architecture [4], certain
components must be replicated and placed efficiently
inside the ALUs in order for parallel processing of
more than one instruction at a time, [6], [7]. The
proposed 4 ALUs are finally synthesized with
designated cell libraries, i.e., COMPASS 0.6um 1P3M
cells and UMC (United Microelectronic Company)
0.25um 1P5M cells, by SYNOPSYS [1]. The results
turned out to be very promising regarding the speed
and area performance.)

2. DESIGNS of ALUS for 64-BIT uPs

2.1 Key issues to be considered in the design
According to the specifications of [8] and [10],
there are a total of 97 assembly instructions (called
POPs, primitive opcode) to be implemented in ALUs
despite the various operand lengths. Several factors
must be considers when it comes to the realization of
ALUs for all of the POPs required for the micro-
architecture of the 64-bit advanced microprocessor.

0-7803-5682-9/99/$10.00©1999 |IEEE.

Shen -Fu Hsiao

Institute of Computer and
Information Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan 80424

Chuan-Lin Wu

Department of Computer Science
and Information Engineering
National Chiao~Tung University
Hsinchu, Taiwan 300

1). spatial location for the placement of all functions
units in the uP

2). POPs to be implemented in each ALU

3). trade-off between area and speed

4). vpartition and modulization of internal function
blocks of each ALU

2.1.1 Spatial location of ALUs

Referring to Fig. 1, the microarchitecture of the 8-
issue superscaler uP is revealed, where 4 ALUs, 2
FPUs and 2 MMUs are required [10]. In order to
maintain the granularity of the ALUs, they are placed
between the reservation station (RS) and the result bus
(Rb). The inputs to the ALUs are 154-bit data called
"AluPop,"” while the outputs to the result bus include
89-bit "AluResult" and 16-bit "errorcode." The formats
of these signals are shown in Fig. 2.

2.1.2 POPs to be implemented

Besides the various length of operands, all of
the POPs to be implemented in the ALUO through
ALU3 are determined by [8] and [10]. The code space
for each POP is properly arranged such that the length
of POP code (i.e., Opcode) is minimized, [o771="T. As
for the length of the operands, it is denoted by a field of
two bits, "S1width" and "S2width" of source operand 1
and source operand 2, respectively. Meanwhile, in
order to achieve the compatibility with x86 assembly
code, the mnemonics of POPs are identical to those of
686 assembly language shown in [8] except a few new
instructions.

2.1.3 Trade-off of area and functionality

The functionality of a uP denotes how many
different instructions it can execute in given number of
clock cycles. Ideally, we can use as many ALUs or
functional modules as possible to achieve any degree of
parallelism or superscaler. However, owing to the
limitations of chip area and power dissipation, the
reduction of the number of function modules is
necessary. For those function modules which are less
invoked statistically but occupy lots of chip area, only
one such module will be kept in the ALUs, e.g.,

1217

multiplier module and divider module. In contrast, for
those function modules which are frequently invoked
and consume small chip area, we tend to increase the
number of these modules such that the throughput of
the uP can be enhanced, e.g., conditional move mo-
dules and adder modules.

2.1.4 Partition and modulization

The partitioning of POPs and the modulization of
relevant POPs are the most difficult task to conquer.
Sophisticated skills and experience might be helpful.
We divide the POPs into the following categories
which then are individually decoded and implemented
as a single internal module.
1). addition-related -- e.g., ADD, ADC, etc.
2). move-related -- e.g., CMOVO, CMOVNL, etc.
3). flag-related -- e.g., CLC, STC, etc.
4). logic-related -- e.g., NOT, AND, etc.
5). Dbit-operation-related -- e.g., BTS, BSF, etc.
6). BCD-conversion-related -- e.g., DAA, AAS, etc.
7). shift-related -- e.g., ROL, SHL, etc.
8). multiplication-related -- e.g., UMUL, MULP, etc.
9). division-related -- e.g., DIV, MODI, etc.
10). set-related -- e.g., SETO, SETS, etc.
11). others -- e.g., BOUND, BSWAP, etc.

Thus, the entire ALU design will be hierarchical
and executable.

2.2 Internal Architecture of ALUOQ

Referring to Fig. 3, the floorplan of ALUO is
illustrated by block diagrams. There are a total of 14
modules in ALUQ. Notably, in order to distinguish the
operation codes used in all ALUs and the function
modules, "Opcode" (fixed 7-bit in length) is employed
to denote the POP representation to the ALUs, while
"OpCode" (variable in length) is used to denote the
code decoded in each function module. The functions
of the modules are described as follows.

1). Control : It is the control unit of the entire data
flow. In other words, it is a finite state machine. It
decodes the Reset_, Op, AluRbFull_, ready, and
FU_Complete signals to generate Stall_, Req_
internal OpCode, and enableflag. If the current
POP is not done, the Stall_ will disable the Latch
module such that the previous AluPop data will be
kept.

2). Latch : It is used to latch the AluPop signal and
then dispatch the data fields therein to appropriate
modules.

3). Addset : It executes ADD, ADC, SBB, NEG, SUB,
SUBSD, SUBGP, INC, and DEC instructions.
Basically, it is composed of a fast 64-bit adder and
glue logics

4). Logic : It executes OR, NOT: AND, and XOR
instructions.

5). Bit Test : This module executes BT, BTS, BTR.,

1218

and BTC POPs.

6). Bit Scan : BSF (bit scan forward) and BSR (bit
scan reverse) are executed in this module.

7). Flags : All of the flag bit operations are executed
in this module, including CLC, STC, CMC,
SAFLAG, CLD, and STD.

8). BCD : Conversion between BCD and binary
formats is done in this module, including DAA,
DAS, AAA, and AAS.

9). Cmove : Many move operations are required in
uP's applications. This module executes all of the
conditional move operations, e.g.,, CMOVO,
CMOVNO, CMOVB, CMOVNB, CMOVZ,
CMOVNYZ, and so on.

. Shift : Usual shift and rotate operations are done in
this module, including ROL, ROR, RCL, RCR,
SHL, SHR, and SAR.

11). MISC : Those instructions which are hard to be
classified are realized in this module. These
instructions are BOUND, MOV, and BSWAP.

12). ALU_Part_4 : This module also executes some
POPs which are difficult to be fit in certain
modules. The POPs include EXCP, MGF, SXT,
SXTH, and XDPL.

13). FU_OK (function units OK) : When all function
modules are done, the OK signals are delivered to
this module. Then, an FU_complete signal is
asserted to trigger RPU such that the appropriate
result data will be placed on Rb.

14). RPU (result processing unit) : This module selects
the output of decoded function module, i.e., one of
the "DESTs" (destination, i.e., the result of each
individual function module), and placed the result
on Rb if the Rb is not busy.

10

=

2.3 Internal Architecture of ALU1

Referring to Fig. 4, the only difference between
ALU1l and ALUO is an extra "Shift_2" module in
ALU1. The purpose of Shift_2 is to execute double
precision shift of given data, i.e., 128-bit data shift.
Since this module consumes large chip area and the
number of appearances of the double precision shifting
POP codes is statistically small, we tend to use one
single module in all of the four ALUs. Another reason
to insert this module in ALUI is the limitation of POP
code space

2.4 Internal Architecture of ALU2

The function modules employed in ALU2, as
shown in Fig. 5, are mainly for multiplication opera-
tions. As we explained before, since the chip area for
64 64 multiplication operation is quite large, we need
to discard some modules which are less utilized in
application programs. Thus, the modules used in ALU2
are Addset, ALU_Part_4, Multiplier Set, BCD, CMove,
SET Group, and MISC. Those modules which are
either not in ALUO or different from the same module

in ALUQ are introduced in the follows.

1). ALU_Part_4 : Besides the POPs implemented in
the ALU_Part_] of ALUO, several POPs are
included in this module, which are XSB, XSL,
MRG, and XTR.

2). Multiplier Set : It is the core module of ALU2. The
multiplication-related POPs are executed in this
module, including UMUL, MUL, MULL, AAD,
UMULP, and MULP.

3). SET Group : All of the set,, instructions are
executed in this module, including SETO, SETNO,
SETB, SETNB, and so on.

2.5 Internal Architecture of ALU3

The core of ALU3, as shown in Fig. 6, is the
divider module which realizes all of the division-
related POPs. There are a total of § POPs to be
executed in the "Divider" module, including DIVRNI,
MODI, UDIV, DIV, AAM, UDIVP, DIVP, and LOPND.
Note that the requirement of the integer division in a
64-bit uP is capable of executing 128/64 division.
Hence, LOPND, i.e., "load operand", is needed to load
128-bit data in two consecutive clock cycles.

Note that the integer divider in this ALU adopts a
digit-recurrence mixed 2-4 radix approach [2]. A
prototype chip of this integer divider has been
fabricated and tested. (CIC no. : T06-87C-09) Fig. 7
shows the die photo of the divider.

3. SYNTHESIZATION and VERIFICATION

The implementation of the four ALUs is realized
by Verilog synthesizable RTL code. All of the Verilog
code has been tested under the NSC98 simulator in
Dept. of CSIE of National Chiao-Tung University, and
it has turned out to be functionally correct. Thus, in
order to have a clear picture whether the developed
RTL code of the ALUs meets the speed and area budget
of the 64-bit advanced uP, the synthesizable RTL codes
are respectively synthesized by SYNOPSYS using
COMPASS 0.6um 1P3M cell library and UMC 0.25
um 1P5M cell library. The results are summarized in
Table 1.

According to the results shown in Table 1, a few
things are to be noted. First, the chip area of the four
ALUs are roughly in the same order. This provides an
advantage when it comes to the placement and routing
phase of the uP integration. Second, though the delay
of the critical path employing 0.25um CMOS
technology is very large, which is 33.72 ns, it does not
necessarily imply that the operating clock frequency is
around 30 MHz. In fact, these long delays are resulted
from the instructions requiring multiple operating
cycles, e.g., multiplications, divisions and
addition/subtraction. The measured fastest operating
clock period is 4.0 ns, which indicates a 250 MHz
clock. Besides, if the full-custom design approach is
adopted, the critical delay should be

even smaller by a factor of 2 or 3. Third, the reason
why ALU?2 is much larger than other ALUs is the area
of the 64x64 multiplier composed of logic gates. This
part of design can be replaced with faster and smaller
multiplier designs, e.g., CPL, or DPL designs. Four, the
long delay generated by ALU3 is owing to the division
steps of the integer divider. Because the digit-
recurrence approach is utilized to realize this divider,
the steps to complete an integer division is uncertain
and more than three clock cycles.

Compared to other ALU designs of multiple issues
superscaler microprocessors, [3] and [9], our proposed
non-homogeneous four-ALU design reveals the supe-
riority regarding area and speed as shown in Table 2.

4, CONCLUSION

In this work, we have presented feasible four non-
homogeneous ALUs for advanced 64bit 8-issue x86-
compatible microprocessors. The proposed four ALUs
not only provide the facility of superscaler and
pipelining, but also meet the critical timing constraint.
The synthesizable RTL code are fully verified and
tested, and the results of synthesis turn out to be
promising in the future applications.

5. REFERENCES

[1] K. Baty, "Design Ware,” Reading : pp. B-3 to B-
12, Synopsys, Inc. 1996.

[2] M. D. Ercegovac, and T. Lang, "Division and
square root - digit-recurrence algorithms and
implementations," Reading : Kluwer Academic
Publishers, 1994.

[31 N. Gaddis, and J. Lotz, "A 64-b quad-issue CMOS
RISC microprocessor," IEEE J. of Solid-State
Circuits, vol. 31, no. 11, pp. 1697-1702, Nov.
1996

[4] L. Gwennap, "Intel's P6 uses decoupled super-
scaler design," Microprosessor Report, vol. 9, no.
2, Feb. 1995.

[51 L. Gwennap, "Klamath extends P6 family,"
Microprocessor Report, vol. 11, no. 2, Feb. 1997.

[6] J. P. Hayes, "Computer architecture and organi-
zation," McGraw-Hill, Inc., 1988.

[71 K. Hwang, "Computer arithmetic principles,
architectures, and designs," Reading :John Wiley
& Sons, 1979.

[8] "Pentium Pro Family Developer's Manual," Intel,
1996.

[91 N. Vasseghi, K. Yeager, E. Sarto, and M.
Seddighnezhad, "200-MHz Superscalar RISC
microprocessor,” IEEE J. of Solid-State Circuits,
vol. 31, no. 11, pp. 1675-1685, Nov. 1996.

[10] C.-L. Wu, "2nd year technical report of an
advanced 64-bit microprocessor,” Reading:
National Science Council, June 1998.

1219

A3ty De3:0) Comerot

B

RAB

| o

spectal € POP dipatches te roxcrvation-siutions
it Oparand Preparmion

Operuid tuses

RS : 3l T
SRR R =]

PEST v

P N ——]
Eo P
_SL RPU F FU_OK
pize _4-. U et
— T

Fig. 5 : ALU2 Block Diagram

Fig. 1 : The microarchitecture of the 64-b superscalar uP Awrap g 134
AluPop format Latch)
153 146 144 142 140 76 12 6 0 i
l Ready I Op l Dtsz ISlwdith | S2width | Srcl l Src2 rFlag Tagin l
1 7 2 2 2 64 64 6 6
AluResult format
85 84 23 17 15 7 1 0
| Req_ | Stall_ I ResultOut | FlagsOujjsize Exception I TagOut E |
(DEST)
1 1 64 6 2 8 6 1
Fig. 2 : /O data format of the ALUs f e e
FU_OK [
Bt] FU couplete
2]
il oo ntrol
[Fig. 6 : ALU3 Block Diagram
n.u.—,f—o —
enablellapaytcot FU_comphete
Fig. 3 : ALUO Block Diagram
e § 154 L Fig. 7 : Die photo of the divider
Control v Latch
rntr) szl Module Name 0.6um 1P3M 0.25um1PSM
o m;z‘k‘m;.i,..‘;. e T Area Critical Area Critical
ri y3 (gate count) Delay (gate count) Delay
z ALUO 30028.75 18.30ns 22858.25 5.08ns
ALU1 43358.57 19.33ns 35915.50 11.56ns
ALU2 48469.56 65.80ns 41801.53 33.72ns
ALU3 30512.07 67.15ns 26804.50 27.67ns
Table 1 : The performance comparison of ALUO through ALU3 using

T Ok gl
o e mocule

Reset_

FU_complete

Fig. 4 : ALU1 Block Diagram

1220

different cell library.(wire load is set to 0.1 pF, and the load of each
module is set to a maximum of 0.9 pF)

ALU Design Quantity Area clock freq.
64-b 4-issue|l] 8 482,500(transistors) 180 MHz
64-b 4-issue[13] 2 643,000(transistors) | 200 MHz
64-b 8-issue, ours 4 122,840(gates) 250 MHz

Table 2 : The performance comparison of the other ALU designs and ours

