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ABSTFMCT 
A method of fuzzy data recall iusing polynomial bidirectional 
hetero-correlator is presented. 'This has a higher capacity for 
pattern pair storage than that 01' the conventional BAMs and 
fuzzy memories. In addition, a new energy function is defined. 
The polynomial bidirectional helero-correlator (PBHC) takes 
ad\wntage of fuzzy characteristics in evolution equations such 
that the signal-noise-ratio (SNR) of data recall is significantly 
increased. The energy of the polynomial bidirectional hetero- 
correlator defined by the proposed energy function decreases as 
the recall process proceeds. ensuring the stability of the system. 
'fhe increase of SNR consequentlly enhances the capacity of the 
polynomial bidirectional hetero-correlator. Theoretical 
expectation value of the capacity of fuzzy data recall using 
polynomial bidirectional hetero-correlator is also estimated. 

1. INTRODUCTION 

Associative memories have been an important research area in 
the neural networks [ I ] .  121. In related works. Kosko presented 
a fuzzy associative memory (FAM) system structure 131. 
However. no energy function introduccd in his works could 
guarantee that every stored pattern pair resides at a local 
minimum on energy surfaces. h4oreover. no capacity analysis 
was performed as well. We propose an energy function and 
vcrify that every stored patterin pair will exist at a local 
minimum in an energy surface for fuzzy data recall using 
polynomial bidirectional hetero-csorrelator (PBHC) in which the 
component of a fuzzy vector is termed a fuzzy bit (fit). The 
PHHC has a higher capacity for pattern pair storage than that of 
the conventional BAMs and fuzzy memories. In this work, we 
adopt the signal-noise-ratio (SNR) approach and derive the 
minimal Z. which i s  deemed as the power of the polynomial. as 
wcll as capacity of the PBHC in an average case. The 
expectation value of the capacity of the PBHC is then attained 
according to an SNR analysis scheme. 

2. FRAMEWORK OF HIGH CAPACITY 
PBHIC 

2.1 Evolution Equationis 

Assume that we are given A4 pattern pairs. which arc 

(yll .,v12.. ..yl,,). Let I 5 i i ,W. x!, E [O. I]. I 5.1 5 n, -vrj E [O. I]. 
~(,~l.~'l).(X2.}'2).. . ..(,Y)\4.1',\4);. where X j  (xi1 ... .,xin). 1.i 

I _< j < p. n and p are the component dimensions of A' and Y, and 
n is assumed to be smaller than or equal t o p  without any loss of 
generality. .x,k .yikE (0lA.llA ,.... mL), fuzzy space = [1.0], A is 
a fuzzy quantum. and CT is a fuzzy quantum gap. By assuming 
that R = IO ,  ID= l /A  = 0.1 and 1/(2R)= 07'2 = 0.05 can be obtained. 
lnstead of using Kosko's approach. we use the following 
evolution equations in the recall process o f the  PBHC 

where ,!.I denotes the number of patterns in the PBHC, X,. I>, i = 

1 .....M. represent the stored patterns. X or Y i s  the initial vector 
presented to the network. xk  and xlk denote the kth digits of X 
and A';. respectively. yk and .v;k represent the kth digits of Y and 

respectively. Z is a positive integer. and U denotes a function 
defined as the following equation: 

Notably. U is bounded 

2.2 Energy Function and Stability 

The fact that every stored pattern pair should produce a local 
minimum on the energy surface to be recalled correctly accounts 
for why the energy function is intuitively defined as 

(4) 
i=l 

Fuzzy data model using PBHC can be viewed as one kind of 
BAM. i.e. bidirectional associative memory. Our earlier work 
proposed a fuzzy data recall using a PBHC [4]. which has been 
verified by a two-phase approach to be stable. 
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2.3 Analysis of the Capacity of PBHC 

lhe SNR approach is adopted herein to compute the capacity of 
the PBHC. Let Xi and Yi be the stored pattern pairs. Assume 
that XI is the input pattern pair and Y I  is recalled expectantly 
Substituting XI for Xallows us to rewrite Eqn.(l)  as 

The first term in the above equation corresponds to the signal. 
and the other terms are the noise. The power of signal is 

s = y l r  . l* .  (6) 

Besides the first term, the remaining terms are actually the sum 
of :A% 1 independent identically distributed random variables. 
Therefore. the noise of these terms is M-l times of the noise of a 
single random variable. Let 

Since all of the vi ‘s, i=2 to ,U. have the same property, we select 
v 2  as the sample. By assuming that ? ( 1 = ( ~ 1 1 ~ 1 2 , . . . , x l ~ ) .  
X2=(~2~~22......~2~). then we can obtain 

A = 1 1 ~ ~ ~  --x,~II E { O / R , I / A  ,..., 1/2 ,..., A / A }  (7) 

Also assume that A is the difference of a fuzzy bit (fit). I t  is 
trivial to derive the following general form of probability 
function for the difference o f a  fuzzy bit (fit) 

2 .  (A - i + 1) 

Where I 5 i 2 A. 
value for the difference of a fit as follows, 

In addition. we can derive the expectation 

l h e  expectation value of the square of thc difference of a fit can 
also be derived as follows. 

2 ( A - Z + I )  / 1+2  (10)  E(LlqI2) = 2 (i): -- 
h+I)? 6 R  ’ 1 - 1  

The mean of one noise term can bc‘dcrived as 

The expectation value of the power of onc noise term can be 
derived as 

L 
From the above Eqn.(3) and Eqn.( I O ) .  :he expectation value of U 
can be obtaincd as follows. 

(13)  

The SNR (signal-noise-ratio) must be greater than one in order to 

R + 2  
6 A  

E(u )  = cp (n+ p ) . - .  

S 
(M - 1) ’ Noise 

- - Signal Power. 
total Noise Power 

SNR = 

Signal 
( At - 1 ) . ( A’oise /erm’ s Puriance ) 

> I .  (14) - 

recall the correct pattern pair 

l h e  variancc of noisc can bc dcrivcd as 

I..‘nr(vi) = E (vj2) - @(vi) (15)  

since 

I5 (Vj2) > E (Vi2) - &i). (16) 

Thus, the following inequality can be obtaincd: 

The above upper bound in Eqn.( 17) is the maximal noise power. 
called NmaP which is equal to E(vj2). Then. the minimal 
signal-noise-ratio (Sh’Rmin) of the PBHC is 

E (vi-?) > I,hr(vi). (17) 
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Next. the minimal Z in the average case for PBHC is derived to 
accurately recall every stored pattern pair according to Eqn.( 18) 
as follows. 

I z > -  
In M 

/ (1 /2) ln[6A/( (M - 1 ) . ( 2 A  + I))]  In 
\ I H [ ( I I  - n ( ( l / 3 ) . ( A  + 2 ) / ( A  + I ) ) ' ) / U ]  

R + 2  M(.bf-l) 
where U can be replacedwith E(u)  = Ci'(n+p).--- = ~ 

61 2 
a + 2  

. ( / I  + p )  .- to derive the espectatim value of Z's lower bound. 

The above Bqn.( 19) is the accurate solution of Z According to 
Eqn.( 18). the capacity can also be derived as follows. 

6/1 

(1/2)h46N((A4 -- I )  (2/1 + I))] 
={ I $ -  [(1/3) ( A  + 2)/(A + 1)r / [A4 (A4 - 1). ( A  + 2) /6A]]  

where II can again be substitutcd with Qu) .  According to 
Eqn.(20): if n = p is assumed. MT can obtain the capacity. A4, 
which is irrclcvant to n. Thus. this observation implies that the 
theoretical expectation value of the capacity of'the fuzzy PBHC 
should be the largest possible combinations given by (0lA. 
I /  A..... A/A]n as follows. 

:U=( 1 +A)? (21) 
Moreover. we assume A >> 1 and n = p to simplify E(u)  as 
follows. 

Thus. at? approximate solution for Z can be obtained as follows. 

Z>- I 
In M 

(1 / 2 ) / n [ 3  /( h' - I ) ]  
"I7 { In [ (  M (Ad - 1) - (2 / 3)) /( M (M - I))]  

3. SIMULATIOlN ANALYSIS 

'To veri@ the capacity analysis. we utilized computer programs 
accurate solution and the approximate solution of Z. respectively. 
Fig. 1 and Fig. 2 plot the above results, respectively. Fig. 3 and 
Fig. 4 compare the results of M VJ. 2 in the accurate solution and 

the approximate solution of 2. where R is equal to 10 and 2. 
respectively (The legends of Z( 1 )  and Z(2) represent the accurate 
solution and the approximate solution of Z. rcspectively). Fig. 5 
summarizes the result of capacity. A4, vs. n given A = IO .  
Because the numerical values of the capacity are too large, a log 
scale is used such that the contrast becomes clearer. According 
to this figure, the fuzzy data recall using the PBHC in the 
average case provides a significantly high capacity of storage for 
patterns. 
Example 1. To verify the capacity. M. described in Eqn.(21) of 
Section 2.3 is correct, we use the PBHC to store and recall a set 
of 10.000 ( A  = 9. n = 4)  fuzzy pattcrns which form 5.000 
different pattern pairs. In this simulation. all of the pattern pairs 
are randomly generated: in addition. these patterns are all unique. 
By assuming that L = 9 and n = 4. then capacity M = 10,000 
according to Eqn.(21). For instance, if the network stores the 
patterns as 

(Xi, Yl)=((0.5.0.7.0.2.0.9),(0.6.0.2.0.5.0.1)) 
(X2, Y2)  = ((0.3. 0.4. 0.1. 0.6). (0.4. 0.6. 0. I .  0.8)) 

(X5000, Y5000)=((0.8. 0.2, 0.3. 0.7). (0.9. 0.2, 0.5  0.1)) 
Simulation r'esults indicatc that just one iteration i s  required for 
every Xi (pattern pair) to recall its Y; (pattern pair) correctly. and 
vice versa. 
For the sake of correctness. the simulation is also performed for 
the other cases, which include M = 1296 (A = 5. n = 4) and M = 

1.000 ( A  = 9, n = 3) .  Those results also verify the validity of 
recalling stored pattern pairs. 

4. CONCLUSION 

According t'o our results. the fuzzy data recall using PBIIC 
provides an extremely high storage capacity for patterns. This 
method utilizes a fuzzy scheme to magnib  the SNK. The 
proposed energy function ensures that every stored pattern pair 
is located i n  a local minimum of the energy surface. The 
capacity of the PRHC in the avcragc case is estimated. thereby 
allowing us to predetermine the size of the PBHC by the demand 
of capacity possible. 
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Fig. 1 : The relationship of ,VI, Z and 1 for the accurate solution 
of Z (n  = 2) 

Fig. 2: The relationship of M, Z and ,I for approximate solution 
o f Z ( n = 2 )  

Fig. 4: The comparison of M vs. 2 in the accurate solution and 
the approximate solution (1 = 2) 

Fig. 5 :  The capacity of the PBHC in the average case (,I = 10) 

Fig. 3: The comparison of A4 vs. Z in the accurate solution and 
the approximate solution (2  = IO)  
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