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ABSTRACT

A method of fuzzy data recall using polynomial bidirectional
hetero-correlator is presented. This has a higher capacity for
pattern pair storage than that of the conventional BAMs and
fuzzy memories. In addition. a new energy function is defined.
The polynomial bidirectional hetero-correlator (PBHC) takes
advantage of fuzzy characteristics in evolution equations such
that the signal-noise-ratio (SNR) of data recall is significantly
increased. The energy of the polynomial bidirectional hctero-
correlator defined by the proposed energy function decreases as
the recall process proceeds. ensuring the stability of the system.
The increase of SNR consequently enhances the capacity of the
polynomial  bidirectional  hetero-correlator. Theoretical
expectation value of the capacity of fuzzy data recall using
polynomial bidirectional hetero-correlator is also estimated.

1. INTRODUCTION

Associative memories have been an important research area in
the neural networks [1}. [2]. In related works. Kosko presented
a fuzzy associative memory (FAM) system structure [3].
However, no energy function introduced in his works could
guarantee that every stored pattern pair resides at a local
minimum on energy surfaces. Moreover. no capacity analysis
was performed as well. We propose an energy function and
verify that every stored pattern pair will exist at a local
minimum in an energy surface for fuzzy data recall using
polynomial bidirectional hetero-correlator (PBHC) in which the
component of a fuzzy vector is termed a fuzzy bit (fit). The
PBHC has a higher capacity for pattern pair storage than that of
the conventional BAMs and fuzzy memories. In this work, we
adopt the signal-noise-ratio (SNR) approach and derive the
minimal Z. which is deemed as the power of the polynomial. as
well as capacity of the PBHC in an average case. The
expectation value of the capacity of the PBHC is then attained
according to an SNR analysis scheme.

2. FRAMEWORK OF HIGH CAPACITY
PBHC

2.1 Evolution Equations

Assume that we are given M pattern pairs, which are
XY DAXR.Y2). . (Xar.Yap)) . where X; = (xj1x0.. Xxin). Yi=
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1 <j <p. nand p are the component dimensions of X and Y, and
n is assumed to be smaller than or equal to p without any loss of
generality. xjk . ik € {0/A.V/A,.... A/A}, fuzzy space = [1.0}, 1 is
a fuzzy quantum. and o is a fuzzy quantum gap. By assuming
that A =10, o= 1/A=0.1 and 1/(21)= 072 = 0.05 can be obtained.
Instead of using Kosko's approach. we use the following
evolution equations in the recall process of the PBHC
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where M denotes the number of patterns in the PBHC, X;. ¥, i =
I.....M. represent the stored patterns, X or Y is the initial vector
presented to the network, x4 and x;; denotc the 4th digits of X
and Xj. respectively, yg and v;i represent the kth digits of Y and
Y. respectively, Z is a positive integer. and « denotes a function
defined as the following equation:
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2.2 Energy Function and Stability

The fact that every stored pattern pair should produce a local
minimum on the energy surface to be recalled correctly accounts
for why the energy function is intuitively defined as

EX D=3 X=Xy,
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Fuzzy data model using PBHC can be viewed as one kind of
BAM. i.c. bidirectional associative memory. Our earlier work
proposcd a fuzzy data recall using a PBHC [4]. which has been
verified by a two-phase approach to be stable.
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2.3 Analysis of the Capacity of PBHC

The SNR approach is adopted herein to compute the capacity of
the PBHC. Let X; and ¥; be the stored pattern pairs. Assume
that Xy is the input pattern pair and Y| is recalled expectantly.
Substituting X for X allows us to rewrite Eqn.(1) as
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The first term in the above equation corresponds to the signal,
and the other terms are the noise. The power of signal is
S:yu.]Z, (6)

Besides the first term, the remaining terms are actually the sum
of M-1 independent identically distributed random variables.
Therefore. the noise of these terms is M-1 times of the noise of a
single random variable. Let
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Since all of the v; 's, i=2 to M. have the same property, we select
v) as the sample. By assuming that Xy=(x[1,%}2,....XIn)
X2=(x21,X22.....x2n). then we can obtain

A=|x, —x|€{0/A,1/4,..0/2,.,A1 4} (D

Also assume that A is the difference of a fuzzy bit (fit). It is
trivial to derive the following general form of probability
function for the difference of a fuzzy bit (fit)
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Where 1 <7 < A In addition, we can derive the expectation
value for the difference of a fit as follows,
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The expectation value of the square of the difference of a fit can
also be derived as follows,
re &Y 2i-ivl) A+2 (10)
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The mean of one noise term can be derived as
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The expectation value of the power of onc noise term can be
derived as
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From the above Eqn.(3) and Eqn.(10), the expectation value of u
can be obtaincd as follows,

E(u):C;’(n+p)~%3. (13)

The SNR (signal-noise-ratio) must be greater than one in order to

SNR = Signal Power _ S
total Noise Power (M —1)- Noise

- -Signal S a8
(M =1) - (Noise term's Variance)

recall the correct pattern pair

The variance of noisc can be derived as
Var(vj) = E (vi2) - E2(v)) (13)
since
E () > E(v2) - E2(v)). (16)
Thus, the following inequality can be obtained:
£ (v,~2) > Far(vy). 7
The above upper bound in Eqn.(17) is the maximal noise power.

called Npqy. which is equal to £(v;2). Then. the minimal
signal-noise-ratio (SNRyin) of the PBHC is

_ S
win = m—
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SNR,
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Next, the minimal Z in the average case for PBHC is derived to
accurately recall every stored pattern pair according to Eqn.(18)
as follows,
1
>
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where u can be replaced with E(u) = )’ (n+p % = ——(—7~—)

(n+ p)% to derive the expectatio value of Z's lower bound.

The above Eqn.(19) is the accurate solution of Z. According to
Eqn.(18). the capacity can also be derived as follows,
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where u can again be substituted with E(x). According to
Eqn.(20). if n = p is assumed. we can obtain the capacity, M,
which is irrclevant to n. Thus, this observation implies that the
theoretical expectation value of the capacity of the fuzzy PBHC
should be the largest possible combinations given by {0/A.

1/A..... A} as follows,
M=(1+A) (21

Moreover. we assume A >> | and n = p to simplify E(u) as
follows,

E(u) = MM;_I)‘(M+,D)-/{6;2
MM -1) A+2
z > (2n) 61
IW M*I
< MO D 22)

Thus, an approximate solution for Z can be obtained as follows,
l
InM

" (L D)3 M - 1)]
In[(M (M =)= Q273 AMM -1y |

zZ>

(23)

3. SIMULATION ANALYSIS

To verify the capacity analysis, we utilized computer programs
accurate solution and the approximate solution of Z, respectively.
Fig. 1 and Fig. 2 plot the above results, respectively. Fig. 3 and
Fig. 4 compare the results of M vs. Z in the accurate solution and

the approximate solution of Z, where A is equal to 10 and 2.
respectively (The legends of Z(1) and Z(2) represent the accurate
solution and the approximate solution of Z, respectively). Fig. 5
summarizes the result of capacity. M. vs. »n given 1 = 10.
Because the numerical values of the capacity are too large, a log
scale is used such that the contrast becomes clearer. According
to this figure, the fuzzy data recall using the PBHC in the
average case provides a significantly high capacity of storage for
patterns.
Example 1. To verify the capacity. M, described in Eqn.(21) of
Section 2.3 is correct, we use the PBHC to store and recall a set
of 10.000 (4 = 9. n = 4) fuzzy patterns which form 5.000
different pattern pairs. In this simulation. all of the pattern pairs
are randomly generated: in addition. these patterns are all unique.
By assuming that A = 9 and n = 4. then capacity M = 10,000
according to Eqn.(21). For instance, if the nctwork stores the
patterns as

(X1, Y1) =1((0.5.0.7,0.2. 0.9), (0.6, 0.2. 0.5. 0.1))

(X2, ¥2)=((0.3.0.4.0.1. 0.6). (0.4. 0.6, 0.1, 0.8))

(X5000, Y5000) =((0.8. 0.2, 0.3, 0.7). (0.9, 0.2, 0.5, 0.1))

Simulation results indicatc that just one iteration is required for
every X; (pattern pair) to recall its ¥, (pattern pair) correctly, and
vice versa.
For the sake of correctness. the simulation is also performed for
the other cases, which include A = 1296 (A =5. n=4) and M =
1.000 (4 = 9, n = 3). Those results also verify the validity of
recalling stored pattern pairs.

4. CONCLUSION

According to our results. the fuzzy data recall using PBHC
provides an extremely high storage capacity for patterns. This
method utilizes a fuzzy scheme to magnify the SNR. The
proposed energy function ensures that every stored pattern pair
is located in a local minimum of the energy surface. The
capacity of the PBHC in the average case is estimated, thereby
allowing us to predetermine the size of the PBHC by the demand
of capacity possible.
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Fig. 1: The relationship of M, Z and A for the accurate solution Fig. 4: The comparison of M vs. Z in the accurate solution and
of Z(n=2) the approximate solution (4 = 2)
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Fig. 5: The capacity of the PBHC in the average case (1= 10)
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Fig. 3: The comparison of M vs. Z in the accurate solution and
the approximate solution (4 = 10)
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