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ABSTRACT

A method of fuzzy data recall using polynomial
bidirectional hetero-correlator is presented. This has a
higher capacity for pattern pair storage than that of the
conventional BAMs and fuzzy memories. A new
energy function is defined. The polynomial
bidirectional hetero-correlator (PBHC) takes advantage
of fuzzy characteristics in evolution equations such that
the signal-noise-ratio (SNR) is significantly increased.
In this work, we prove the stability of fuzzy data recall
using polynomial bidirectional hetero-correlator. The
increase of SNR consequently enhances the capacity of
the polynomial bidirectional hetero-correlator.  The
capacity of the fuzzy data recall using PBHC in the
worst case is also estimated.

KEYWORDS: polynomial bidirectional hetero-
correlator (PBHC), SNR, storage capacity

1. INTRODUCTION

Associative memories have been an important research

area in neural networks [1], [2], [3], [4], [5], [6], [9], [10].

Kosko presented a fuzzy associative memory
(FAM) system structure [7], [8]. However, no energy
function introduced in his papers could guarantee that
every stored pattern pair resides at a local minimum on
energy surfaces. Moreover, there was no capacity
analysis given in the papers.

The rest of this paper is organized as follows. Section 2
analyzes the framework of the high capacity polynomial
bidirectional hetero-correlator (PBHC) in which the
component of a fuzzy vector is called a fuzzy bit (fit).
We present the new evolution equations in the recall
process of PBHC in Section 2.1. Next, we propose our
energy function and two-phase approach to verify the
stability of fuzzy data recall using the PBHC in Section
2.2 which attempts to overcome the deficiency of
previous investigations. Herein we also adopt the
signal-noise-ratio (SNR) approach and we present the
equation of sufficient condition of the polynomial
bidirectional hetero-correlator to analyze the Z value,
which is deemed as the power of the polynomial, and
capacity of the PBHC in Section 2.3. The lower bound
solution of Z value attempts to develop a means for the
mathematical theory associated with PBHCs to derive
the smallest Z value, which can still recall all of the
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stored pattern pairs such that the dimension of the
patterns can be as large as possible. Any Z value,
which satisfies the condition of absolute lower bound of
the Z value, can recall all of the different patterns stored
in the PBHC. In Section 3, the simulation results are
given, which outperform those of previous works.
Concluding remarks are finally made in Section 4.

2. FRAMEWORK OF HIGH
CAPACITY PBHC

2.1. Evolution Equations

Suppose we are given M pattern pairs, which are
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where X; = (Xi1,%i0. <+ Xi)s ¥; = ViYoo) Let 120 <
M, x;€[0,1],1<j<ny,€[0,1],1<j<p, nand p are
the component dimensions of X and Y, and » is assumed
to be smaller than or equal to p without any loss of
generality. Instead of using Kosko's approach [9], we
use the following evolution equations in the recall
process of PBHC.
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where M is the number of patterns in the PBHC, X, 1, i
= 1,...,M, are the stored patterns, X or Y is the initial
vector presented to the network, x, and x,, are the kth
digits of X and X, respectively, y, and y, are the kth
digits of Y and Y, respectively, Z is a positive integer,
and u is a function defined as the following equation:
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Note that u is bounded.

2.2. Energy Function and Stability

Since every stored pattern pair should produce a local
minimum on the energy surface in order to be recalled
correctly, the energy function is intuitively defined as
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The above fuzzy data model using PBHC can be deemed
as one kind of BAM, bidirectional associative memory.
Therefore, we can explore its stability by studying its
two phases of evolution, i.e, X > Yand ¥ - X.

Theorem 1 : The PBHC modeled by Eqn.(2) and Eqn.(3)
is a stable system.

Proof . We discuss the stability of observing the
behavior of energy function of two directions, X — ¥
and Y > X, respectively.

Phase 1 : X —» ¥. We use the energy function as

Eqn.(5).
Thus,the v E(Xx,r) can be computed as follows,
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The difference of E due to a bit's change, therefore, can
be derived to be
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According to Eqn.(3), we have the following inequalities
when x, is the next state of x, .

Case 1: If
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then , x}c =X, according to (3). Thus, A, E(X, Y)=0.
Case2: If
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then, X, > x,. Thus, according to (7), A, E(X,Y) <0.

Case3: If
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then, x, < x,. Thus,according to (7), A, E(X,V)<0.

In conclusion, the X — Y phase causes E to decrease,
A, E(X,Y)<O0.

Phase 2 : ¥ — X. We again use the energy function as
Eqn.(5). Since the procedure of the derivation is very
much the same as that of the X—>Y phase, there is no
need to repeat the lengthy discussion.

In conclusion, the Y—X phase also causes E to decrease,
Note that the energy function defined in Eqn.(5) is
bounded. In short, the X—>7Y phase always drags down
E(X Y), while the Y->X phase also reduce E(X,Y). The
evolution will be terminated when E(X,Y) reaches the
minimum where the pattern pairs are stored.

2.3. Analysis of Capacity of PBHC

We adopt the SNR approach to compute the capacity of
the PBHC. Let X; and Y, be the stored pattern pairs.
Assume X, is the input pattern pair and Y¥; will be
recalled expectantly. By substituting X, for X, Eqn.(2)
can be written as



®

The largest noise that can appear is in the worst case, and
which will be just one component different, while the
other components stay the same between components X;
and X, For instance, X, = (%), %1p....%;,), and X; =
(1% 100 - X 1/(2A)), i1, where x, yye {0/4,1/4,..., /A
}, fuzzy space = [0,1], A is fuzzy quantum, and ¢ is
fuzzy quantum gap. Suppose A = 10, we can obtain &
= 1/4=0.1, and 1/(21) = 0/2 = 0.05. The first term in
the above equation corresponds to the signal, and the
other terms are the noise. The power of signal is
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Besides the first term, the rest of the terms are actually
the sum of M-1 independent identically distributed
random variables. Therefore, the noise of these terms
is M-1 times of the noise of a single random variable.
From Eqn.(8) we can get the following inequalities:
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The first term in the above equation is the signal, and the
second term is deemed to be the noise in the worst case.

Let
yu=j/ A, j € {0,1,2,3,....4}, yu € {0/AVA2/A,.. ., \I2}.
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The sufficient condition for the noise must be bounded is
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The above equation can be simplify as follows,
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The worst case will occur when j=1, and we deem the
above equation as sufficient condition for the polynomial
bidirectional hetero-correlator (PBHC) to recall any
pattern correctly.
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We next derive the minimal Z in the worst case for the
PBHC to correctly recall every stored pattern pair as
follows,
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and » = max(n,p). Since we wish to derive the absolute
upper bound of u, it will be reasonable to use n =
max(n,p) instead of » = min(xnp) in the above result.
We deem the above equation to be the absolute upper
bound of . The above Eqn.(14) is the lower bound
solution of Z, and according to Eqn.(13), we also can
derive the capacity (M) as follows,
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where
u=M-(M-1) n
3. SIMULATION ANALYSIS

In order to verify the capacity analysis described in
Section 2.3, we use computer programs to produce the
values among M, Z, and n for A equal to 2, 5, 10, and
100 for the lower bound solution of Z. The above
analyses are plotted in Fig. 1, Fig. 2, Fig. 3 and Fig. 4,
respectively (The legends represent the values of Z).
After the lower bound solution of Z is derived, the
capacity of the fuzzy data recall using the PBHC can be
computed by Eqn.(16). Fig. 5, Fig. 6, and Fig. 7 are the
relationships of capacity (M) vs. n in the lower bound
solution of M. In Fig. 5, A=10,Z=3; InFig. 6, A =
100, Z=4; and in Fig. 7, 1 =300, Z= 4. From the figures,
we can see that the fuzzy data recall using the PBHC
provides a significantly high capacity of storage for
patterns.

Example 1. We can use the result of this research for
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pattern recognition. We tend to use the PBHC to store
and recall a set of 7 x 11 fuzzy data composed of
twenty-six different pattern pairs (English letters, upper
case and lower case). We next apply the evolution
equation in Section 2.1 and the lower bound of solution
of Z in Section 2.3. In Fig. 8 and Fig. 9, we present
every pattern pair with » = p = 77 to this network, and
we find that just one iteration is required for every
capital letter to recall its lower case letter correctly, and
vice versa.

4. CONCLUSION

The fuzzy data recall using the PBHC provides a
significantly high capacity of storage for patterns. It
utilizes a fuzzy scheme to magnify the capacity. The
proposed energy function ensures that every stored
pattern pair is located in a local minimum of the energy
surface. The capacity of the PBHC is estimated, so the
size of the PBHC can be predetermined by the demand
of capacity.
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Fig. 1 The relationship of M, Z and » for A=2 Fig.4 The relationship of M, Z and n for =100
160000
140000
Bs7 120000
B 56 100000
B45
80000
34 .
023 .
B2 40000
0 : : .
wooAW P 4 W W W & w10
n
Fig.5 The capacity of PBHC in the worst case (1=10,
Z=3)
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Fig. 3 The relationship of M, Z and » for 1=10 Fig. 6 The capacity of PBHC in the worst case (1=100,
Z=4)
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Fig. 7 The capacity of PBHC in the worst case (1=300,
Z=4)

Fig. 9 Pattern recognition examples (M=26, n=77,
p=77)

Fig. 8 Pattern recognition examples (M=26, n=77,
p=17)
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