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Abstract

A method for modeling the learning of belief combination in evidential reasoning using a neu-
ral network is presented . A centralized network composed of multiple exponential bidirectional
associative memories (eBAMs) sharing a single output array of neurons is proposed to process the
uncertainty management of many pieces of evidence simultaneously. The stability of the proposed
multiple eBAM network is proved. The sufficient condition to recall a stored pattern pair is discussed.
Most important of all, a majority rule of decision making in presentation of multiple evidence is also

found by the study of signal-noise-ratio (SNR) of multiple eBAM network. The result is coherent
with the intuition of reasoning,.

1 Introduction

Neural networks have been drawing increasing interest as powerful tools to solve different tasks of
artificial intelligence. An associative memory is one type of neural network which essentially is a single
functional layer or slab that associates one set of vectors with another set of vectors. Kosko [4] proposed
a two-level nonlinear network, bidirectional associative memory (BAM), which extends a one-directional
process to a two-directional process. Jeng [3] and Wang [8], respectively, then generalized the concept of
storing information in the exponential BAM.

Among the problems of evidential reasoning, conflicts caused by sequential programming and partial
dependency are pretty hard to be fully resolved [6]. The basic reason is all of the traditional methods
for evidential reasoning are developed for two pieces of evidence. Thus, when there are more than two
pieces of evidence, conflicts will happen if the combination orders are different [6]. Wang.et al.: pointed
out the importance of simultaneously processing many pieces of evidence [6], and they further proposed
a method using multiple BAM structure to handle the demand of combining many evidence at the same
time [7]. However, due to the inherently poor capacity of BAM [3], [8], obviously the multiple BAM
network would be limited to a foreseeable degree of processing capability. We propose a multiple eBAM
network to increase the processing capability of reasoning many evidence. We also discuss the majority
rule of decision making for handling many evidence at the same time. The majority rule means if more
than half of the presented evidence support one hypothesis, though the rest-of the presented evidence
don’t, the belief combination of all of these evidence must be dominated by the hypothesis. This rule is
intuitively in accordance with the human reasoning.

2 Framework of Multiple Exponential BAMs Network

2.1 Evolution equations

As shown in Fig. 1, the multi-eBAM network is constructed with I single eBAMs which share a
common output array of neurons. In each clock, the input vectors are presented at the input array of
neurons, respectively. Suppose we are given N training sample pairs to the gth eBAM of the network,
which are {(Aql: Bl)! (Aq'); B2)7 ) (A‘IN’ BN)}u where Aqi = (aqil: AgiZy ony aqin); B; = (bil; biz, ..., bip)~
Let X; and Y; be the bipolar mode of the training pattern pairs, Ay, and B;, respectively. That is,

Xgi € {-1,1}" and Y; € {-1,1}*. Thus, we use the following evolution equations in the recall process
of the multi-eBAM network : »

L N N
Yk = sgn <Z§:yekbxv‘"‘«) y Zgk = sgn <Z rqekby‘“y) €y

g=1i=1 i=1

1 This research was partially supported by National Science Council under grant NSC 82-0113-E-110-092-T.
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where b is a positive number, b > 1, ”-” represents the inner product operator, zx and z4 are the kth
bits of X and the Xg;, respectively, and y¢ and i are for Y and the Y, respectively. '

2.2 Energy function and stability

Since every stored pattern pair should produce a local minimum on the energy surface [8] in order to
be retrieved correctly, the multi-eBAM network’s overall energy function is defined as

E= ZE(Xq,Y ZZ(bxa- Xa 4 p¥Y) ()

¢=1i=1

Assume E(Xq, Y) is the energy of next state in which ¥ stays the same as in the prev1ous state, and all

of the other eBAMs stay at the same state as before. Hence, AE,, = — Z‘_ pXair X, —(- E|_1 bXai-Xq),
Assume the ith pair is the target of the recall process for the gth eBAM. Let dqm be the Hamming

_distance between X, and Xg, d;xi the Hamming distance between the X; and X,;. Hence the AE,;, can
be modified to be :

Zlogba»" “«z-)+§jlog 720y = 3wl - 2o 3)

i=1 k=1

Note that log is used, which is a monotonic function. From the recall process shown by Eqn.(1) and
Eqn (3), the AE;; < 0 is ensured. This result was also proved by Jeng et al. {3]. Because Eqn.(1) makes
(qu — Z4k)Z4ik always nonnegative such that AEW < 0, and then E,, < 0 can be directly derived [8].
Obviously, it also holds for the other case : E(X,,Y ) < E(X,,Y) if the pair is heading for a stored pair,
(X4i,Y:). Since the E(X,,Y) is bounded by —N(b" + ¢?) < E(X,Y) < =N (b~" + b7P) for all X,’s and
Y, the energy of the multi-eBAM network will converge to a stable local minimum..

2.3 A Majority Rule for the Multi-eBAM Network

A. The majority rule of a special case

Every single eBAM tends to store their own pattern pairs in the local minimums of their network,
respectively. However, not every single eBAM will agree to have a common output pattern. Hence, we
formulate the entire problem as follows : Given a multi-eBAM network composed of L single eBAMs,
what is the minimal majority factor k, k € [0, 1], to make kL eBAMs, which are vowing a common output
pattern and the other eBAMs are not, dominate the common output? Note that in fact the kL denotes
an integer, Ceiling(kL), which is the smallest integer larger than kL.

Before we discuss the lower bound of kL, we have to study an extreme case in which a upper bound
of kL will be derived. Assume the pattern pairs, (X11,Y;),(X21,Y:), .. (XkL1,Yr), are encoded in 1st
to kLth eBAMs, respectively, and pattern pairs, (X(xz41)1,Ys),-..(XL1,Y;), are stored in (kL + 1)th
to Lth eBAMs, respectively. Thus, when input patterns, Xy1, Xs1, ..., X1, are presented at the input
array of each individual eBAM, the Y, is the output pattern that we are looking for, i.e., it is deemed
as the signal. By the SNR approach [1], [3], [8] and the evolution equations (1), we are aware of the
following facts :

L N kL L
SO Ty e K = (b + Y oy ey S (gt + Y wabX e Xe) (4)

¢=1i=1 ¢=1 iEr g=kL+41 i#s

By our previous assumptions, only the first term in the above equation is the signal we wish to observe
at the output array of processing units. As for the rest terms, they are the undesired noise. Therefore,
we can derive the signal power is S = E 2" = kLb®™, and the largest power of noise, which means all
of the rest (1 — k)L eBAMs support another output pattern Y;, is N = (1 — k)Lb>" + L(N — 1)b*r~2),
In the noise power equation, we assume not only all of the rest (1 — k)L eBAMs support another output
pattern, but also this pattern is the closest pattern to the desired one. If the desired output is intended
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to be recalled, then the sufficient condition is the S > N according to the SNR approach Thus we can
conclude the lower bonds for this definite recall condition of k is -

N -1 ,
55 %)

Note that this lower bound of k means any k bigger than this threshold can force the output pattern
to be the common desired output pattern of the kL eBAMs in the network. However, if the bound of
Eqn.(5) is larger than 1, it means even all of the eBAMs support one output pattern, there is no guarantee
to recall this common pattern.

ELO™ > (1 — k)Lb™ + L(N — DD = k> = +

B. The majority rule of the general case

In the above extreme case, we assume all of the rest (1 — k)L eBAMs support another same output
pattern which is only one bit Hamming distance away from the desired pattern. Generally speaking,
however, most of the reasoning problems won’t be this.special. . We will consider a general case in which
kL eBAMs still support a common output pattern, but the rest (1 — k)L eBAMs don’t support the same
output pattern, i.e., they individually support their own output patterns, respectively. Basing upon this
assumption, then we can derive the following results.

L N

S5 webXeXe = kL yab™ + (1 k)L - y,kb"+22ykb"«-xw+ Z I yubXe X (6)

g=11i=1 g=1i#r g=kL+1 i#s

The 3rd and 4th terms of the above equation can be analyzed by the SNR approach proposed by Wang
[8]. Hence, the power of the 3rd and 4th terms are, respectively,

1 b2n(1 b4 n~1 . 1 b2n b--4 n-—1
Ns = 2(5)"-1—(%—)~— KL(N—1), Ny= 2(5)"—141-4”—““)—— A=KV =1) (7
" The SNR of this case can be further derived,
SNR= u - ®

(1 - k) + (N - 1) . 2(%)n—111+b;:2n-—1

If the common desired output pattern must be recalled, then the sufficient condition is the SNR must
be greater than 1. Therefore, we conclude the above dlSCUSSlOIl of a maJonty rule of multi-eBAM network
with the following theorem: :

Theorem of the majority rule for a multi-eBAM network : Given a multi-eBAM network with
L single eBAMs, kL eBAMs support a same common output pattern, where k € [0, 1]. The condition for
the output pattern of the network is the same as the one supported by the kL eBAMs is

1 1

k> St S SR ' . ©)

n—l bd

where SNR.pam = TN_ﬁW according to Wang’s analysis [8]. If the lower bound k in Eqn.(9)
is larger than 1, then it means even all of the single eBAMs in the network support one output pattern,
there is no guarantee to recall this output pattern.

By the above theorem, please note because the SN R.p4 s is usually very large, the lower bound of &
can be simplified to be % which complies the human intuition. That is, if more than 50% of the evidence
supports a hypothesis, then the reasoning result most likely would be the same as this hypothesis.

3 Simulation Analysis

Example 1.* We construct a series of multi-eBAM networks, L = 3to L =31, n=p =8, b=ce
to-verify the k prediction of the majority rule. In every multi-eBAM simulation, the number of stored
pattern pairs for each single eBAM is also varied from N = 3 to N = 99. In this simulation, all of the
pattern pairs are randomly generated. The result is the majority rule holds in every case, even in the
worse case, L = 31, N = 99, in which the predicted ¥ = 0.515923, and 16/31 = 0.516129 > 0.515923.- The
relation between k and N is illustrated in Fig. 2, while the minimal k selected in networks with different
number of eBAMs is shown in Fig. 3. For the sake of comparison, we also repeat the simulation for the
special case. The minimal k in the special case is shown in Fig. 4.
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4 Conclusion

A multi-eBAM neural network has been introduced for the belief combination in evidential reasoning.
It is proved to be bidirectionally stable, which ensures the model’s ability to reach a local energy minimum.
The sufficient conditions for a multi-eBAM network guarantee the network to recover a specific, pre-
determined pattern pair from a list of choices. Most important of is the theorem of the majority rule of
the network proves this neural network complys with the intuition of human reasoning. Two majority rules
and their respective bounds for the majority factor, k, are presented. These rules will help researchers

to use and predict the result of evidential reasoning. This network provides the ability to process many
evidence at the same time reaching a consented hypothesis.
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Fig. 1 The configuration of a multi-eBAM neural network. Fig. 2 The lower bound of k with different N.
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Fig. 3 The minimal k In different networks. Fig. 4 The lower bound of k in the spacial cass.
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