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Abstract- A model for evidential reasoning is pro-
posed, in which the belief function of a piece of ev-
idence is modeled as a probability density function,
which can be a continuous or discrete form. We con-
sider a polar notation of mutual dependency rela-
tionship between the evidence, in which the depen-
dency between two interrelated pieces of evidence
is described by an angle. This method can resolve
the conflict resulting from either the mutual depen-
dency among many pieces of evidence or the struc-
tural dependency in an inference network due to the
evidence combination order. Belief conjunction, be-
lief combination, belief propagation procedures and
AND/OR operations of an inference network based
on the proposed model are all presented. Some ex-
amples are given to demonstrate the advantages of
this method over the conventional approaches.

I. INTRODUCTION

Evidential reasoning, which has been an essential part
of many computational system, is a task to assess a
certain hypothesis when certain pieces of evidence are
given, and the result is a new piece of evidence rep-
resenting the consensus of the original pieces of evi-
dence, which in turn can be applied to another stage
of reasoning. There are three major frameworks of ev-
idential reasoning in the literature, i.e., the Dempster-
Shafer theory of evidence, the fuzzy set theory, and the
Bayesian probability theory [4], (5], [6]. The advan-
tages and weaknesses of these three frameworks have
been discussed in [1], [2], [7], [8], and [9]. The applica-
tion of Shafer’s belief function to manage uncertainty of
information in a rule-based system has attracted much
attention in artificial intelligence research. The non-
robustness of this model has been discussed in [3], [10].
Besides this drawback, the basic probability assignment
(BPA) of a belief function is in a form of discrete type
function which can not always provide a precise descrip-
tion of any evidence for all the situations. The possible
quantization problem caused by thresholding a continu-
ous region for the weight of evidence has been discussed
in [1]. The continuous form of belief function, which is
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a more general representation, is more appropraite for
the expression of the vagueness of an evidence in many
situations. With regard to the dependency relationship
between many pieces of evidence, Hau proposed a coef-
ficient between maximally dependent and independent
cases to indicate the degree of dependency [3]. How-
ever, the bilateral mutual dependency relationship has
not been discussed. Such a dependency relationship in
an inference network has never been seriously addressed
in the literature.

In this paper, we propose a novel method which fo-
cuses the efforts on achieving conflict resolution of belief
combination resulting from mutual dependency of many
pieces of evidence in an inference network. It can also
handle the information aggregation based upon the con-
tinuous belief functions, which is closer to the human
reasoning process.

II. THEORY OF THE POLAR MODEL
A. Representation of Evidence and Rule

In the belief function introduced by Shafer [6] and
Hau [3], two parameters, i.e., lower bound and upper
bound, are employed to indicate credibility and plau-
sibility. For the sake of clarity, the belief function is
borrowed to represent the probability density function
associated with a piece of evidence in the following text,
and the belief function proposed by Shafer, [6], is named
as Shafer’s belief function. As discussed earlier, the
probability assignment strategy for Shafer’s belief func-
tion has its inherent drawback. For example, if a piece
of evidence is to emphasize that the closer it is to the
truth, the stronger it is, then that evidence can be con-
veniently modeled by a continuous function, which is a
probability density function,

Bel(§) =k - 6, )

where @ is in the interval [0, 1] indicating the truth of
the evidence, and k is a constant. We can hardly find
any significant thresholds to quantize the associated be-
lief function into a discrete form which can be handled
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by either Dempster-Shafer theory [6] or Hau’s modified
Demsper’s rule [3]. Therefore, a more general represen-
tation of evidence is needed to represent such kind of
uncertainty.

Definition 1 : A piece of evidence or a rule in a rule-
based system is represented by a subset A of the frame
of discernment ©, and a belief function associated with
Ais represented by a probability density function pa(f),
where § is a variable indicating the degree of truth for
the evidence. A denotes the complement of A. 1 is
used to denote the truth of the evidence and 0 is used
to denote the falsity of the evidence. # is a numerical
value in the interval [0, 1].

For the sake of simplicity, 0 is used to denote the
complement of the authenticity of a piece of evidence,
and 11is used to denote the truth of the piece of evidence.

Definition 2: A rule Rin arule-based system conveying
uncertainty is represented by the following format

RZE-—>H, with pE—vH(O);

where E is a piece of evidence, H is a hypothesis implied
by E, and pg_.g(f) is a probability density function
which describes the degree of truth of the rule. The
rule R: E — H in the above definition is interpreted
as logic implication, where E is called the antecedent
and H is called the consequent.

B. Polar Model and Belief Conjunction

By definition, belief conjunction refers to the deduc-
tion of the belief associated with (AN B) from the belief
associated with the two pieces of evidence A and B, re-
spectively. That is, given two frames of discernment © 4
and Op, a compatibility relation between ©4 and Op
is the Cartesian product of them, which is represented
as

©4 X Op — Ounp (2)

We can apply the logic operation symbol to represent
the above definition,

Conj(A,B)= ANB (3)

where Conj(A, B) represents the result of belief con-
junction of A and B.

When we emphasize that one piece of evidence A is
dependent on another piece of evidence B, we are also
aware of that the conjunction or combination result of A
and B is dominated by the evidence B from the analog
of human reasoning. That is, in human reasoning, if the
degree of dependency of an evidence A on another evi-
dence B is getting stronger, then the belief conjunction
result is naturally biased toward the latter one, B. In
the extreme case, if the evidence A is totally dependent

on B, then the conjunction result should be the same
as the evidence B. Henceforth, an appropriate repre-
sentation of dependency between two pieces of evidence
is needed. Referring to Fig. 1, suppose we have two
pieces of evidence A and B conveying, respectively, be-
lief functions p4(f) and pp(6). Motivated from (2), we
place these two pieces of evidence, respectively, on the
two axes pu and v of the Cartesian coordinates. Hence,
a 2-D surface will be formed by the product operation
in (2),

psurface(ﬂ; V) = PA(IJ) . pB(V) (4)

The above expression is a 2-D function forming a 2-D
surface which should be somehow transformed into 1-D
form for the belief function of the conjunction result. In
other words, the whole 2-D function has to be properly
projected onto a single line on the y-v plane. This line
is called the conjunction line on which the probability
density function will denote the belief function of the
conjunction of the two given pieces of evidence. We
suggest to choose the following line as the conjunction
line :

Leonj : v=m-p=tana -y (5)

where o is the angle between Lc,n; and p-axis. Since the
mutual dependency between two pieces of evidence can
be interpreted as the relative degree of the conjunction
result biased towards individual evidence. Therefore,
the angle of the conjunction line forms a natural index
of the degree of the dependency. For example, if « is
0, then the conjunction line will reside on the p-axis in
Fig. 1, i.e., the evidence B completely depends on A4; if
a is 7, then the evidence A completely depends on B;
if @ is £, the conjunction result is not biased towards
either of the two pieces of evidence, which indicates the
nature of independence. Henceforth, we can define the
degree of mutual dependency as follows.

Definition 3 : If two pieces of evidence A and B are
arranged as the configuration in Fig. 1, the tangent of
the angle & between the conjunction line and the p-axis
is called the degree of dependency of evidence B upon
evidence A, which is denoted by

pBa = tana (= m).

The dependency relationship between two pieces of
evidence will be treated as directed links, which means
paB 1s not equal to pps. However, the following rela-
tionship holds,

1
PAB = —.
PBA

Note that the range of « is [0, 2] and that the degree
of dependency defined in the above definition is in the
range [0, 0], instead of the conventional range [0, 1].
Let the variable w denote the degree of belief of the

1848



conjunction result of two pieces of evidence A and B.
If evidence B depends on evidence A with a degree of
dependency m = tana, then for a certain value of w it
implies that the strength of a certain degree of belief of
evidence B is the same as one mth of the degree of belief
of evidence A. In other words, all of the probability
density product p4(p)-pp(v), where v+-71;p = w, should
be attributed to peonj(w), i€,

u.b.
pconj(w) = ./Ib PA(N) pB(w - %/’L)d“ (6)

where [.b. and u.b. denote the lower bound and the upper
bound of the region for the integral. Note that v +
—f;lu = w forms a line, which is called the cumulative
line associated with w. Referring to Fig. 2, which are
top views of the model in Fig. 1, we can derive the 1.b.
and the u.b. for different w.

w.b. = min(mw, 1), 1.b. = max(m(w — 1),0) (7)

The following property of conservation of probability
for the belief function under belief conjunction can be
proved.

Lemma I :

141
[ pemstera =1 ®)
0

It is noted that the range of w is [0,1+ L], instead
of [0,1]. This means a normalization step is needed to
normalize the result peonj(w) in (6) to an eligible belief
function so that it can be utilized in another stage of
conjunction operation.

1 1
Pion3 (0) = (14 =)peons (1+—)0), 0<0<1, (9)

where p¥ . denotes the normalized belief function of the

conjunction result.
C. Dependency Propagation Problem

Consider the inference network shown in Fig. 3. Let
evidence B and C be conjuncted first, which will pro-
duce an intermediate evidence, D, which possesses the
same properties as an evidence. Since an intermediate
evidence is conjuncted by two pieces of evidence, the
dependency relationship of the conjuncted intermediate
evidence to other evidence can be assumed to be linear
interpolation of the individual dependency relationship
of each terminal evidence, which complys with the na-
ture of human reasoning. And the linear interpolation
coeflicients are the relative weights of the two pieces
of evidence with respect to the intermediate evidence.
Hence, before evidence D and E are conjuncted to as-
sess the final uncertainty of the belief conjunction of the
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three pieces of evidence B, C, and E, the dependency
relationship between the intermediate evidence D and
the evidence E' must be determined basing upon the
given informations which are dependency relationships
of any two of three pieces of evidence, B, C, and E.
That is, the dependency relationship between the given
pieces of evidence, B and C, will propagate through the
inference network to build up the dependency relation-
ship of the consequent intermediate evidence D.

Suppose we are given the following mutual depen-
dency relationships,

pcB = my = tanay, (10)
PEB = My = tanasy,

pEC = m3 = tanas.

The dependency degree of the evidence B on C is
tan(% — a1), which is equal le Similarly we can also
get ppe, and pcp. Therefore, the mutual dependency
relationship between E and D can be determined by,

1
my = l—mL—‘m2+1_’rn1__.m3
m T m T
_ 1 mi
- m%+1'm2+m%+1'm37

where ppg = m4 = tanay. Hence the following propo-
sition will hold,

Dependency Propagation Proposition : Given the con-
figuration shown in Fig. 3 and the degree of dependency
in (10), the degree of dependency of evidence D on E
is given by

Qg = tan_l(m tanaz + (11)
ancil___ tana )
tanZay + 1 3

and PDE = My = tanoy,

where ppg is the degree of evidence D depending on E.

D. Belief Combination

Belief combination refers to the belief conjunction of
several pieces of evidence or facts supporting the same
goal hypothesis. Since the basic probability assignment
method discussed in [3] and [8] will introduce a con-
flict (A N 4), a conflict resolution approach is needed
to achieve the consistency of belief combination. In our
proposed model, if both pieces of evidence A and B are
supporting hypothesis C, then the probability density
function projected on the conjunction line is the belief



function of C. Therefore, Eqns (2) to (11) can also be
applied to the combination of two pieces of evidence,
except that the two pieces of evidence must support
the same hypothesis. The deficiency and nonrobust-
ness of Dempster’s rule have been discussed in detail in
Hau’s work [3]. However, both Hau and Shafer ignored
the vagueness of the dependency relationship between
the two pieces of evidence. The mutual dependency
relationship of pieces of evidence always introduces sig-
nificant conflict in the reasoning result of an inference
network. Referring to Fig. 4, if there are three pieces
of evidence, M, N, and K, supporting a hypothesis L,
then in a sequential rule-based system, two of them have
to be combined first, and then the result is combined
with the third evidence. Two cases are shown in Fig.
5. In the example of Section III, we will demonstrate
the conflict resulting from the combination order in an
inference network.

E. Belief Propagation

Belief propagation refers to the aggregation of the un-
certainty associated with the evidence or fact to fire a
rule and the uncertainty of the rule itself so as to deduce
the uncertainty of the goal hypothesis of the rule. Given
arule R: P — () and an evidence P, we are interested
in exploring the belief function of the conclusion @ sup-
ported by the evidence P, which is defined as the belief
propagation result of the evidence P and the rule R.
Because it is impossible to obtain the exact belief func-
tion of the consequent @) from the given evidence and
rule, what we can expect is an assessment of the mazi-
mum bound and minimum bound of the belief function
associated with Q. If one piece of evidence A is covered
by another evidence B, i.e., the information of A is con-
tained in that of B, then we denote their relationship
by A C B. Using this notation, the relationship among
the maximum bound @4z, the minimum bound @min,
and @ can be expressed as

Qmin - Q - Qma:c« (12)

Let pp_.q(0) be the belief function associated with
the rule R and pp(0) be the belief function associated
with the evidence P. The conjunction of the rule and
the evidence is

(P-Q)NP=(QNP) (13)
The conjunction result (Q N P) means the consequent Q
holds when it is supported by the antecedent P. There-
fore, the belief function of this conjunction provides
the minimum bound of the belief function of @, ie.,
Qmin = (QN P). This result meets the definition which
we have explored for the belief propagation. Therefore,

by applying the conjunction procedure of Section II.B
to a piece of evidence and a rule, we will get the result
of belief propagation. In other words, the belief func-
tion obtained by the conjunction of the belief functions
of the antecedent and the rule is actually the minimum
bound of the belief function of the consequent.

However, we are also interested in assessing the max-
imum bound of the belief function of the consequent Q).
Referring to [3), the smallest range of @ is (PNQ) which
can also be derived from basic logic operations. Hence,
we conclude that

Qmaz-_-(Pn@):P_’Q (14)

which implies the maximum bound of the belief func-
tion of @ is exactly the same as the belief function of
the given rule despite what the belief function of P is.
In other words, if the maximum bound is employed as
the belief propagation result, then the uncertainty of
the antecedent will not have any impact on the belief
propagation. This is not true at all. Note that many
researchers have proposed various approaches to recover
and approximate the belief function of the consequent,
and provided many explanations to their methods, e.g.,
[3]. However, we are only interested in the impact pro-
vided by the antecedent to the consequent which shows
the degree of the antecedent supporting the consequent.
Henceforth, we adopt only the minimum bound of the
belief function of the consequent in a belief propagation
procedure to assess the uncertainty aggregation of belief
propagation.

In propositional logic, the logic implication, A — C,
can be synthesized by the conjunction of other logic
implications, for example, the rules A — B and B — C.
It is easy to derive the following ” chaining syllogism”.

Lemma 3 : Given two rules

Ry: A—»B,and R,: B—>C (15)
with the belief functions pg,(6) and pgr,(#), respec-
tively. The belief function pg,(6) associated with the
new rule, R3 : A — C, is the conjunction of the two
belief functions, pg, (f) and pg,(9).

F. AND/OR operation

In an inference network, the function of each node
is either AND or OR operation. In order to analyze
the uncertainty aggregation of an inference network, it
is necessary to consider these two operations for belief
function. In Section II.B, we mentioned that the con-
junction of two pieces of evidence are deemed as the
AND operation of the two pieces of evidence, which is
described as Conj(A, B) = AN B. Therefore, all of the
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theory of the belief conjunction given in Section II.B
can be applied to the AND operation.

An OR operation for two pieces of evidence can be
defined as Union(A,B) = AU B. From basic logic
theory, we know

AUB=A+B-ANB,
which means the following equation holds,
(16)

where pconj(6) can be derived according to the model
introduced in Section IL.B.

PUm'on(g) = PA(9) + pB(H) — PConj (9)

Since an inference network can be viewed as an
AND/OR graph, if all of the pieces of evidence, rules,
and the mutual dependency relationships are given, the
belief function of the hypothesis can be derived by the
proposed model.

III. SIMULATION EXAMPLE

Example 1. Considering the two cases in Fig. 5,
which have different structures. Assume
Cr(M)=10.98, Pl(M)=0.99, pnk =0.5,
Cr(N)=10.01, PI(N)=0.02, pnm =01,
Cr(K)=10.01, PI(K)=0.99, pgsy =0.9.

The inconsistent results of these two cases computed
by Hau’s method are tabulated in Table 1.

CTL @L 1- PIL
Case 1 | 0.006903 | 0.012857 | 0.980239
Case 2 | 0.003064 | 0.033357 | 0.963579

Table 1: The results of Hau’s approach applied to
cases of Fig. 5.

According to Table 1, the resulted credibility of case 1

is more than twice of that of case 2. On the contrary, the -

plausibility of case 1 is only half of that of case 2. These
results indicate that Hau’s method is easily subject to
the combination order of the pieces of evidence. This
is not consistent with the intuition of human reasoning.
To a human, if these three pieces of evidence are given,
and a belief function of the combination of these three
pieces of evidence, then intuitively there should not be
such a serious conflict no matter what the combina-
tion orders are. Therefore, we conclude that the results
obtained by Hau’s method are not consistent with the
human reasoning. The reason why the conflict happens
in this example is the mutual dependency relationship
between evidence will propagate through the inference
network during the multi-stage belief combination.
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Given the same data, we use our method, i.e., Eqns.
(2) to (11) to process each combination in the two cases
in Fig. 5. The final results are listed in Table 2.

Crr Or 1- Pl
Case 1 | 0.010000 | 0.019700 | 0.970300
Case 2 | 0.010000 | 0.019700 | 0.970300

Table 2: The results of proposed model applied to
either case of Fig. 5.

By applying the dependency propagation proposition
in (11), the degree of dependency, pxg, in Case 1 of
Fig. 5 is 0.9109, and the degree of dependency, png,
in Case 2 of Fig. 5 is 0.2790. In Table 2, it is obvi-
ous that both cases have the same credibility Crg and
plausibility Crp + O, which means our model will not
be seriously influenced by the order of the belief combi-
nation, and thus meets the intuition of human reason-
ing. The confliction appearing in Example 1 is resolved
by our model. Here we have introduced a dependency
propagation proposition, which turns out to be superior
to the conventional scalar form for the dependency be-
tween pieces of evidence in resolving conflict caused by
the dependency problem.

IV. CONCLUSION

A novel approach to manage uncertainty in rule-based
systems is presented in this paper. Our model offers sev-
eral advantages over previous works. First, the conflict
caused by the combination order and the dependencies
among many pieces of evidence in an inference network
can be solved. Second, not only the discrete belief func-
tions, but also the arbitrary continuous belief functions
can be processed, which has not been explored up to
date. Third, the dependency propagation problem of
an intermediate evidence has been fully solved. Fourth,
the conflict of belief propagation caused by the mutual
dependency relationship of the antecedent of the rule
and the rule itself is solved. The simulation results of
the proposed model also turn out to be very appealing.
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