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Abstract This paper presents a novel design for a
double-edge triggered flip-flop (DETFF). A detailed
analysis of the transistors used in the DETFF is car-
ried out to determine the critical path. Therefore, the
proposed DETFF employs low-Vy, transistors at crit-
ical paths such that the power-delay product as well
as the large area consumption caused by the low-Vy,
transistors can be resolved simultaneously. There-
fore, the proposed DETFF fully utilizes the multi-Vy,
scheme provided by advanced CMOS processes with-
out suffering from a large area penalty, slow clock
frequency, and poor noise immunity. The proposed
design is implemented using a typical 0.18-um 1P6M
CMOS process. The measurement results reveal that
the proposed DETFF reduce the power-delay product
by at lease 25% (i.e., dissipated energy).

Keywords Double-edge triggered - Flip-flop -
Low power - Multiple Vy, - Clocking

1 Introduction

A double-edge triggered flip-flop (DETFF) can latch
digital data signal switches at both the rising and the
falling edges. In other words, DETFFs allow system de-
signers to use a slower frequency clock while maintain-
ing the same data throughput. In addition, the power
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dissipation is expected to be reduced by half without
any significant negative impact. DETFF can thus be
used in many VLSI signal processing applications, es-
pecially in register and latch intensive SOC (system-
on-chip) applications [12-14]. Double-edge triggering
or latching is also widely used in pipelining designs,
e.g., [1, 2], to reduce the sequencing overhead. Many
DETFF-related researches have been reported thus
for, including [3-10]. Lu and Ercegovac [6] is probably
one of the earliest works to resolve the demands of
double-edge triggering. The states of the cross-coupled
pairs in the two latches do not flip easily, which in
turn decreases the operating frequency. The solution
reported in [3] mainly focused on the speed rather
than the power consideration. Johnson and Kourtev
[4] successfully integrated a PTL (pass transistor logic)-
based XOR gate with a pair of back-to-back inverter
pairs such that the number of transistors was reduced.
The DETFF in [8] was designed specifically for TSPC
(true-single-phase-clocking) logic.

With the increasing developments in CMOS tech-
nologies, multiple Vi, (threshold voltage) transistors
can be fabricated on a single die. Such rapid devel-
opments have led to increased emphasis on realizing
further improvements in the performance of DETFF
designs by using deep sub-micron CMOS processes. For
instance, [5] proposed the use of a low-swing scheme to
resolve the power dissipation problem. Low-Vy;, NMOS
transistors are driven by the clock and the inverted
clock. However, a total of three back-to-back inverter
pairs are required. Sung et al. [7] reported a full-low-
Vin DETFF that actually replaces all of the transistors
in the DETFF described in [4] with low-Vy, transistors.
Obviously, the power consumption is reduced in such a
design. However, methods using multi-Vy, suffer from
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the problem that low-Vy, transistors occupy a larger
area than normal transistors. Moreover, several side
effects are caused. First, the subthreshold current is
increased, which is undesirable in the standby mode.
Second, the noise immunity worsens because of the
reduction in the threshold voltage. Therefore, it is nec-
essary to determine the critical path in a DETFF and
determine which transistors can be suitably replaced by
low-V, MOS.

2 Low-Energy DETFF Design

With the rapid developments in CMOS technology,
multiple threshold voltage transistors have now be-
come available. In this study, dual threshold voltage
transistors manufactured by a typical 0.18-um 1P6M
CMOS process are used to construct a DETFF.

2.1 Current Analysis of Dual-Vy, Transistors

The drain current in the saturation region of a MOSFET

transistor is given by

In = & Weff
b 2 Leff

(Vs — Vin)?, (1)

where k, is the process parameter and Wy and Leg
are the effective width and length of the transistor,
respectively. According to Eq. 1, a lower threshold
voltage transistor can produce a larger drain current.
Furthermore, if we consider VLV—e;‘ to be constant, then
Eq. 1 can be derived as Ip & (Vs — Vin)>.

Consider a TSMC 0.18-um 1P6M CMOS process
as an illustrative example. The threshold voltages
of normal (high) NMOS/PMOS and medium (low)
NMOS/PMOS are listed in Table 1. For the NMOS,
Ves = VDD = 1.8 V, the high threshold voltage
Vinen = 048 V, and the low threshold voltage
Vihnem = 0.23 V. Therefore, we can calculate the ratio

of i"—” as
DL

Ipy (Vs — Vinn)* (1.8 —0.48)?
Ip.~ (Vas— Viem)? (1.8 —0.23)2°

)

Table 1 Characteristics of MOS transistors in a 0.18-um CMOS
process.

Normal N Medium N Normal P Medium P

Vin (V) 0.48 023V —0.49 —0.28
W/L (nm/nm) 220/180 220/300 220/180 220/250
Area (um?) 0.92x1.5  0.92x1.78 1.08x2 1.6x2.59
Area penalty 0 +18.67% 0 +91.85%

W/L denotes the feature size of the MOS transistors.

@ Springer

where Ipy and Ip; are the drain currents of the
high and the low threshold voltage transistor, respec-
tively. Therefore, the current increases by approxi-
mately 40%.

On the other hand, with the decrease in the transistor
operating voltage, the threshold voltage decreases as
well. The subthreshold current is calculated as

Weff

o

- 10(VGer)/S’ (3)

Ipsus =

where W, and I, are the gate width and drain current,
respectively. S is the subthreshold swing parameter,
and it can be calculated as

ol @)

ox

S~23Vr [1 +

where V7 is the thermal voltage and Cy, the junction ca-
pacitance between the source and the drain. The leak-
age current can be obtained by replacing Vg with 0 as

Weff

o

leax = 1,107 Vu/S, Q)

If W, remains unchanged, then Ipgyg as well as
Icax Will increase with [,. Therefore, the subthreshold
current becomes a positive factor for driving wires. In
other words, a transistor with low-Vy, is more suitable
for driving wires than for storing data. In contrast, high-
Vi transistors are suitable for storing data.

2.2 Side Effects of Low-Vy,

In addition to the increased leakage current when low-
Vi transistors are used, other side effects are also
produced.

Temperature Coefficient The reduction in the thresh-
old voltage leads to an increase in the temperature
coefficient according to the following equation.
1 BVth

TCVih = —  ——,

"7 Ve oT
where TCVy, is the temperature coefficient and 7', the
temperature.

(6)

Output Impedance of Drain The impedance looking
into the drain of an MOS is given by the following
equation.

9i
ot 'D

= o« (Vs — Vi) - 4, @)
dvps

o

where r, is the output impedance, ip and vpg are
the AC portions of the signals of the drain current
and the voltage drop across the channel, respectively,
and A is the channel modulation factor. Therefore, the
reduction in the threshold voltage leads to an increase
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Figure 1 Single-latch DETFF described in [4].

in the output impedance at the drain. In other words, it
is difficult to flip the state at the drain.

2.3 Schematic of Proposed DETFF

Figure 1 shows the single-latch DETFF described in [4],
and Fig. 2 shows the modified version of the single-
latch DETFF proposed in [7]. The only difference be-
tween the two is that in the latter, all of the transistors
are replaced with low-Vy, transistors except for the
two inverters on the right-hand side. Although the
simulation results reported in [7] showed that there
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Figure 2 Single-latch DETFF described in [7].
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Figure 3 Proposed energy-efficient DETFF.

was an improvement in terms of power dissipation,
the area penalty is very high. According to the char-
acteristics listed in Table 1, the area overhead will
be roughly 55.26%, which is impractical. In addition,
the increased output impedance at these output nodes
makes it difficult for the back-to-back inverter pairs to
flip states if necessary, according to the analysis in the
previous section. Consequently, the operating speed
will be reduced.

A simple method to improve the single-latch DETFF
is shown in Fig. 3. M13 to M16 are XOR gates that are
used to detect the edge transitions generated in the
inverters 113 to I16. Therefore, this combination acts
as an edge detector and generator, which is not critical
to the state transitions at D and Q. It is not necessary
to suffer the large area penalty and high leakage current
by using low- Vy, transistors to construct such an XOR gate.

Selection of M18 Notably, the input, D, is present at
the source of PMOS M18, while we expect that the

CLK

o e

41umyg

18.255 um

Figure 4 Layout of proposed DETFF cell.
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Figure 5 Die photo of prototypical chip using proposed DETFF.

state of node B will follow the input D given the fact
that the XOR result at the gate drive of M18 is pulled
low. Because D is at the source of M18 and B is at
M18’s drain, M18 is physically a common-gate amplifier
formation whose gain is proportional to gmg, the
transconductance of M18. gmns is directly propor-
tional to (Vs — V). Therefore, a low-Vy, transistor
is a better solution to obtain speed and power at the
expense of area.

Selection of M17 The output, Q, resides at the drain of
M17. In order to make it easy for I17 to flip the state of
Q, its load should be small. Therefore, using a low-Vy,
transistor will be a bad solution based upon the con-
clusion given by Eq. 7. Therefore, we propose the use
of anormal NMOS transistor rather than a low-Vy, one.

Selection of M19 and M20 Basically, M19 and M20
constitute an inverter to drive I17. However, the input
of this inverter, i.e., node B, is the output of another

: B I Y T T |Wl f'v

10 MHz

| J ':w[ lJ L) L_J L |‘w

/'l 5 MHz

Figure 6 One DETFF operates with 10 MHz clock.
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Figure 7 4-bit DETFF counter operates with a 10 MHz clock.

inverter composed of M17 and M18. Notably, the in-
verter composed of M17 and M18 is a “floating” in-
verter where there is no path to either VDD or GND.
Therefore, node B becomes a “weak” output to drive
the inverter composed of M19 and M20, where M19 is
the current source and M20 is the current sink. If M19 is
a high-Vy, transistor, it will suffer from the problem of
having to supply a large current to drive 117 in addition
to the fact that the “weak” node B cannot easily switch
it on. As a consequence, the slew rate (SR = 3 = C—IL
at Q deteriorates. Hence, M19 should be a low-Vy,
transistor.

In other words, the proposed DETFF only utilizes
two low-Vy, transistors at M18 and M19. The overall
area penalty is then reduced to merely 11% at most
[15].

3 Implementation and Measurement

TSMC (Taiwan Semiconductor Manufacturing Com-
pany) 0.18-um 1P6M CMOS process is adopted to
design the proposed DETFF. The layout of the pro-
posed DETFF cell is shown in Fig. 4; the cell has an
area of 4.1 x 18.255 um?. A photo of the die photo
of a prototypical chip design is shown in Fig. 5. It
has an area of 823 x 888 um? and it includes pads,
two 4-bit registers composed of the proposed DETFFs,
a build-in current-starved VCO, a loadable up/down

Table 2 Performance comparison with previous works.

[4] [8] [7] [11] Ours
Rise delay (ps) 503 381 410 169 375
Fall delay (ps) 765 430 420 170 345
Power (W) 663 909 478 154 317
PxD (fJ) 50.5 39.0 19.6 260.3 11.9
Years 2001 1997 2004 2007 2009
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Figure 8 Comparison with proposed design and previous work

[7]-

counter also composed of the proposed DETFFs, and
a MUX. Figure 6 shows the 1-bit DETFF operating
with a 10 MHz clock. Figure 7 shows the proposed
4-bit DETFF counter operating with a 10 MHz clock
to justify that the DETFF-based registers are operating
correctly. A performance comparison of the proposed
design with several previous DETFFs is summarized
in Table 2. Although the proposed design has a chip
area that is increased 11 %, it dissipates the least energy
and consumes the least power. Our design saves at
least 33% power and 39% energy. Figure 8 shows the
comparison with the proposed 4-bit DETFF counter
and all low-Vy, 4-bit DETFF counter [7]. It is observed
that our design can save more power when the clock
rate increases further.

4 Conclusion

In this work, we have proposed an energy-efficient
DETFF design to realize low power consumption. A
detailed circuit analysis help determine which transis-
tors should be replaced with low-Vy, ones and which
transistors should be replaced with normal ones. The
measurement results justify our analysis.
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