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Design of an Inner-Product Processor for Hardware
Realization of Multi-Valued Exponential Bidirectional
Associative Memory

Chua-Chin Wang, Chenn-Jung Huang, and Ying-Pei Chen

ital neural computing. The critical path of the inner product of two

vectors is the carry propagation delay generated from individual
product terms. In this work, a novel and high-speed realization of
inner-product processor for the multi-valued exponential bidirec-
tional associative memory (MV-eBAM) is presented in order to re-
duce the carry propagation delay, wherein the treatment of inner
product of two vectors is given. Notably, a systolic-like architec- . )
ture of digital compressors is used to reduce the carry propagation (2 ‘1)‘ w
delay in the critical path of the inner product of two vectors. The A
architecture we propose here might offer a sub-optimal solution for
the digital hardware realization of the inner-product computation. Compressor Unit

Abstract—nner-product calculations are often required in dig- % (2m 1) )

Inner Product Term
Generator

Index Terms—Bidirectional associative memory (BAM), digital
compressor, digital neural computing, exponential BAM, multi-
valued.

m+2w

I. INTRODUCTION

INCE Kosko [1] proposed théidirectional associative
S’nemory(BAM), many researchers have invested effortsd -
on exploring the network’s properties and limitations. Due to
its intrinsic architecture, the capacity of BAM is unfortunatelyomputation of two multi-valued vectors can be done by a
poor [2]. It is notable that Chiueh and Goodman [3] proposgstocess of successive multiply and accumulate operations
exponential Hopfield associative memory motivated by theonventionally [6], [7]. This method generates the individual
MOS transistor's exponential drain current dependence fher-product term by using a multiplier and employs a
the gate voltage in the subthreshold region such that thiagle adder to sum up all the inner-product terms iteratively.
VLSI implementation of an exponential function is feasibleThe systolic-like architecture of partial product reduction
Although the impressive capacity of an eBAM was foungtee for the parallel multiplier introduced by Wallace [8]
[4], the data representation of BAM or eBAM is still limitedmotivated the implementation of several parallel schemes
to be either bipolar vectors or binary vectors. We consid@sr the inner-production calculation [6], [9]. Researchers
that the expansion of the data range, i.e., frpal, +1}" to have also proposed a variety of compressors to speed up
{L,2,...,L}",L > 1 is also a feasible method to enlargehe process of partial product reduction in multiplication or
the capacity. It also enriches the data representation. Thifer-product operation, such as 4-2, 5-5-4, or 9-2 com-
observation leads to the multi-valued exponential bidirectiongtessors, etc. [10], [11]. However, Oklobdzigt al. [12]
associative memory (MV-eBAM) [5]. pointed out that it is the interconnection of the compressors,

Since neural computing used in the networks similar to thgther than the structure of the compressors, that leads to
MV-eBAM is composed of mass amount of inner-produahe fastest realization of partial product reduction in multi-
calculations, the demand of shortening the delay therewistication operation. The superiority of the 4-2 compressors
becomes urgent. Otherwise, the hardware realization &fid 7-3 compressors built by Zhawed al. [13] verified that
any neural network becomes impractical. The inner-produgle conclusion of Oklobdzijat al. is correct. Besides, Wang
et al. [14] compared different compressor architectures and
c?‘ncluded that the systolic-like architecture outperforms
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Fig. 2. Inner-product term generator.

reduced. In addition to the compressor unit, an inner-product BB a(a’) ")
term generator is also proposed to produce the individual
inner-product terms as the inputs to the compressor unit. 1 r—

Il. THEORY OFMV-eBAM F=a®y

Before the introduction of the inner-product processor for the

MV-eBAM, it is necessary to show how the MV-eBAM oper-

v il Y

ates theoretically. Suppose we are gividrpattern pairs, which

are S=F®p C=Fp+Fy
(X1, Y1), (X2, Ya), ... (Xaz, Yar)} (1) v '
where ARY) o (oy)]

X, — (37‘1 T "y ) YV, — (y<1 Yo n ) Fig. 3. A 3-2 compressor building block.
v T 2l BLy oty wmJ o v T wly Jriy s sy J1p

wheren is assumed to be smaller than or equaptwithout

any loss of generality. Hence, the evolution equations of the

MV-eBAM are shown as

I, 1-05)-2<a<(l+05) 2

u e Hz)=4q1, z2<15-2 (3)
_ 5 Sty yikb—ll =X L z>D
O N A F e . . .
i= wherel = 1,2, ..., L, Lis the number of finite levels, ant} is
S M b I YAl the finite interval of the staircase function. Note thabif— co
o =H S Iy -y @ andL — o, thenH(xz) ~ z, forz > 0. The reason why

the staircase function is used is the argumer®in) in (3) is

key patterns;

a positive number, called the radix> 1;

kth digits of X and X; with 4, andy;;, for Y and

Y;, respectively;
a staircase function shown as

not necessarily a positive integer. We, hence, have to assign this
argument to a nearest integer.

The reasons for using an exponential scheme in (2) are to
enlarge the attraction radius of every stored pattern pair and to
augment the desired pattern in the recall reverberation process.
In the evolution equations (2), if the given input pattern is close
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1 1 Ill. HIGH-SPEED INNER PRODUCT PROCESSOR FOR THE
MV-eBAM

In order to reduce the carry propagation delay produced
in the implementation of the MV-eBAM, it is demanding to
develop a special-purpose processor for the inner product of
S two multi-valued operands. The entire design of multi-valued
inner-product processor is divided into two parts, which are
an individual inner-product term generator, and a compressor
unit. The inner-product term generator produces the individual
inner-product terms given two multi-valued vectors, and passes
them to the compressor unit, in which a summation of product
terms is computed. Fig. 1 shows the data flow of a multi-valued
inner-product calculation.

A. Inner-Product Term Generator

Fig. 4. Systolic-like architecture ¢2¢ — 1)-to¢ compressor fog = 6. Considering the compatibility with the binary digital system,
the number of finite leveld. in (3) is set ta2* — 1 in the im-
to the desired pattern, the weighting coefficientX—X:1I” will  plementation of the inner-product processor for the MV-eBAM.
be close to the maximum, 1, while if the input pattern is far frofgesides, the computation of each individual inner-product term
the desired one, it will approach zero. As for the purpose of tie | X — X;|* or [[Y” — ¥;||? turns out to be an unsigned in-
denominator, it makes thg, andz;, to be the centroids of all of teger operation because each term is always positive. Thus, each
they,.’s andz;,.’s, respectively. product term in (2)product can be evaluated by
The capacity of the MV-eBAM can be shown to be very 1 w1
close to the maximum number of_comblnatlons of the input product = A- B = <Z A, - 2¢> . <Z B, .22‘)
vector, i.e., M. =~ L™ when b is large enough (Wang — —
and Hwang, 1996). Hence, the MV-eBAM indeed possesses — A B . 92w—2
. . w—12w—1
a high capacity. w03
However, one serious problem occurs when it comes to the + (Aw—2Bw-1 + Aw-1Bu—2) - 2 +o
physical implementation of such a high-capacity associative + (AoB2 + A1 By + Ay By) - 2°
memory by digital VLSI circuits. In the computation of the + (AoB1 + A1 Bo) -2 + AgBg - 29 (4)
MV-eBAM, the inner product of two vectorsX — X;| or
IlYY — Y;||> might be one of the most frequently used mathwhereA;, B; is 0 or 1.
ematical operations. Notably, if or p is large in the above Notably, the design of the inner-production term generation
calculation, then the carry propagation of the inner product bécomes simple because only AND gates are required to pro-
the vectors will likely become the critical delay of the entireluce thew? partial products in (4). Fig. 2 shows the configu-
neural computing. This side effect undoubtedly devalues thation of the inner-product term generation unit. Note that the
hardware realization of the MV-eBAM. dimension of the stored patterns is set to the count of the inputs
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Fig. 6. Systolic-like architecture of a MV-eBAM compressor for= 5 andw = 2.

to a(2™ — 1)-to-m compressor, which will be introduced in theof 1s given in inputs. The equations of a full adder are shown
next section. Therefore, the length of the inputs to the inner-pras follows:

duction term generator i2™ — 1) - 2w, and the length of the , , , ,

outputs ig(2™ — 1) -w? according to (4). In case thatthe dimen- 5 = (@®7)-F +(a®~) - f=F-F + 1"

sion of the stored patterns is less ttzih — 1, all the unused C=(ady)-B+(ad®y) y=F -f+F -y (5)
|ZneprLc1)§ to the inner-production term generator are padded WItrﬁereF denotes(a @ 7).
As shown in Fig. 3, the logic structure of a typical 3-2 com-
pressor can be split up into two logic layers. One of the three
B. Framework of the Compressor Unit inputs,3(3"), is not required in the first logic layer.
A (27 —1)-to-g compressor building block can be constructed
1) Systolic-Like (27 — 1)-to-¢ Compressor Building by cascading 3-2 compressors, as shown in Fig. 4. This archi-

Block: A 3-2 compressor is basically a full adder. The featurecture, inspired by the design methodology of systolic arrays,
of such a compressor is that the output represents the numbansists of parallelized 3-2 compressor building blocks only at
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every processing stage. Note that the number beside the arrohe number of 3-2 compressors used in these two architec-
pointing toward each circle represents the count of the inputsttoes we present above is identical because no unused inputs to
the 3-2 compressors at each processing stage, while the nuntber3-2 compressors appear in bé#i — 1)-to-¢ compressor
beside the two outward arrows indicates the count of the outpstsuctures. Thus, we can conclude that the count of 3-2 com-
of each 3-2 compressor building block. The number inside tipeessors used in the systolic-like architecture of #ffe- 1)-to-¢
circles denotes the count of the 3-2 compressors which procesmpressor is alsp? — g — 1.
the inputs at some specific bit positions. 2) Framework of Digital Compressor DesigrAccording to
To compute the total count of 3-2 compressors used#ia (4), the summation of the partial product terms is not computed
1)-to-g compressor, we consider an alternative architecture iofthe inner-product term generator. This implies that the out-
the(2?2—1)-to-g compressor, which is composed of ty§—* —  puts of thew? AND gates are fed into the compressor unit at the
1)-to-(¢—1) compressors an@—1) 3-2 compressors, as showrrequired bit positions. Beside®]* — 1 individual inner-product
in Fig. 5. Based on the configuration of this compressor, we céarms need to be accumulated at each bit position. Thus, there
derive the count of the 3-2 compressors used in this architectwidl be 2™ — 1 partial product terms at LSR,- (2™ — 1) par-
as follows: tial product terms at the second bit positian; (2™ — 1) par-
tial product terms at thesth bit position, and2™ — 1 partial
product terms at thé2w — 1)th bit position (MSB), and so

Ny =1 forth, as shown in Fig. 2. Since many accumulation operations
N3 =4 must be performed to obtain the final result, the improvement
N,=2-No_1+q—1, ¢>2 (6) of the carry propagation delay of the critical paths is the major

consideration for the architecture of the compressor unit. The

whereN, denotes the number of the 3-2 compressors used igtire architecture we propose to achieve this goal is shown in
(27 — 1)-to-g compressor. Fig. 6. Since this compressor unit is composed of one or sev-

By solving the above recurrence relation, we obtain eral (2™ — 1)-to-m compressors at each bit position, we tend
to set the dimension of the stored patterngto— 1 to reduce
the number of the unused inputs to the basic 3-2 compressor
Ny=29—¢g—-1 (7) building blocks.
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in0: 31 inputs to the compressor unit at LSB position.
in1: 62 inputs to the compressor unit at 2nd bit position.
in2: 31 inputs to the compressor unit at 3rd bit position.
out: output generated by the compressor unit.

test: expected output.

¢: measured delay in current test.

d: maximum delay measured so far.

z: the count of tests

Fig. 8. A waveform diagram sample of the inner-product calculation.

Although it is difficult to derive a general form of the critical S e ﬁ,%
delay for the compressor unit due to its irregular structure, the o ? 5 T T L*?q
estimated delay can be derived by attaching fictitious 3-2 com- h
pressors of 2w — 2) stages on the top of the compressor unit LD(H{ ﬁ‘?
to form a single(27 — 1)-to-¢ compressor tree. Since there are ) =
(2™ — 1) -w? inputs to the compressor unit, the length of the in- | '——Kj ﬁ yhi; ﬁé—, ﬁEi

o

|
puts to the made-uf2? — 1)-to-g compressor tree now becomes [!j_ﬁ 1_5,1 L:h Ly
(2m —1)-w?-(3/2)%*—2 after tracing back to the top level of the =1

(27 — 1)-to-¢ compressor. We assunig,, ,, denotes the count QI; ‘]I;
-
= =

3

"

of 3-2 compressors in the critical path of the compressor unit,
then the delay can be derived as follows:

™ _1)ow?.( 2w—2
log &m0 (2) 2
Drn,w ~ 3 - (2w - 2) @)
log 5 v
§ § Fig. 9. Schematic diagram of the 3-2 compressor building block.
log2 21
<[(m—1)- o8 Ogg+(2w—2)—‘—(2w—2)
log 5 log 5 3\ 202
< 2m+ 11.36logw — 1.71. (8) (2™ —1)-w?. <§> (1—(2/3)*7?)
The number of 3-2 compressors used in the compressor unit . ) 3\ 22
can be estimated based on (7). Bgtdenotes the number of the =(2"-1) v 2 -1 (11)
3-2 compressors used in the madef2p— 1)-to-g compressor
tree. First, we get where( denotes the count of the 3-2 compressors at the fictitious
_— (2w — 2) levels. Then)V, can be computed as follows:
m 3

g~ m+ 2logyw + 1.17w — 1.17 (10) =2"-1)-w® —m—2logyw — 1.17w + 1.17. (12)
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Fig. 10.  Circuit layout of the 3-2 compressor building block. Fig. 11. Circuit layout of the MV-eBAM inner-product processor for= 5

andw = 2.

[V. SIMULATION AND ANALYSIS
the delay of an-bit CLA counted by the number of 2-input
logic gates is

A conventional multi-valued inner-product processor is pre-
sented in Fig. 7 to facilitate the overhead analysis of our de- D, pitcLA = logz 7+ 3. (16)
sign. As Fig. 7 shows, th&” — 1 components of the two input
vectors are fed into the individual inner-product term genera
serially, where the number of finite levelg, in (3) is set to
2’“’ — 1. During each cycle, th@Q outputs qf the individual N _pit CLA = 37 - logy 7 — 3. (17)
inner-product term generator is streamed into a Wallace-tree
multiplication array to obtain th2w-bit product. Notably, afast N summary, the conventional scheme requires an extrhit
adder such as carry-lookahead adder (CLA) is required at fabA, an (m + 2w)-bit CLA, and an(m + 2w)-bit register.
final stage of the multiplication. Then the product is fed intéiowever, the compressor unit as shown in Fig. 6 is replaced by

another CLA to get the accumulated partial sum of the inngte simpler Wallace tree, and only one set of individual inner-
product. Since the maximum value of the inner prodifGt,, product term generator is needed in this scheme. The extra hard-

A. Performance Analysis

Meanwhile, the number of 2-input logic gates used in this
t{’?ree-like CLA can be shown as

can be derived by ware cost for our proposed scheme can be estimated as follows:
P (gm w “ 1) w?--- (2™ —1) AND gates for the inner-product term gen-
max = (2™ —1)-(2¥ = 1) - (2¥ - 1)- erator;
= 2mt2w _ gtw _ gmiwtl 4 guwtl 2) (2™ —2)-w? —m 3-2 compressors used in the compressor
+ om _ q > 2nl+2'w+l (13 Unit.

Although the hardware complexity of the above-mentioned
form > 1 andw > 2, the output bit length of the CLA is conventional inner-product processor is simpler than our
required to be at least 42w, which is also the output bit length scheme, the total delay of the inner-product calculation caused

of the compressor unit as given in Fig. 1. by this simple yet slow architecture turns out to be
Similar to the approach taken for the derivation of (8) and

(12), the propagation delay of the Wallace-tree multiplication Delay conyentional schieme
array counted by the number of 3-2 compressors can be esti- =(2m-1)- ( DanD + Dwallace tree
mated as follows:

() + Dy-bit CLA +D(m+2w)-bitCLA) (18)

og ————

Dwallace tree & W - (2w - 2) where
> 2 Danp delay of theanD gate;
<11.36logw —1.71 (14) Drwallace tree delay of the Wallace tree multiplication

and the approximate number of 3-2 compressors used in the array;
multiplication array becomes D, -bit CLA delay of the CLA;

) D i20)-bitcLA delay of the CLA.
NVVallace tree ~ W~ — 2 10g2 w — 117w —+ 117 (15)

. As for the total delay of our proposed scheme, it can be ex-
Next, we need to evaluate the critical delay and the hardwag§g.ssed as follows:

complexity of the two CLAs. Based on the tree-like architecture
of the CLA proposed by Dozzet al.[15], it can be shown that Delay oy scheme PAND + Dcompressor unit (19)
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