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Fig. 11. Time series of the number of clustersN for the case of� = 0:296,
M = 80:0 krad/s, and�f = 1:0 kHz.

Fig. 12. Distribution functionQ (� ) of the residence time� for the state of
N = 1. A straight line is drawn by the least squares method and the value of
slope is�1.54.

The cooperative phenomena in the globally coupled system have
been mainly studied in the map system. The present experimental
system can sufficiently show such dynamical behaviors studied in the
map system even though the system size is very small.
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Analysis of Practical Expectation of the Capacity of PBHC
with Fault Tolerance

Chua-Chin Wang and Cheng-Fa Tsai

Abstract—This investigation presents a novel method of practical expec-
tation of the capacity of polynomial bidirectional heterocorrelator (PBHC).
This has a higher capacity for pattern pair storage than that of the conven-
tional bidirectional associative memories and fuzzy memories. In this brief,
the practical capacity of the data processing using PBHC considering fault
tolerance in the average case is estimated, simulation results are presented
to verify the derived theory.

Index Terms—Associative memory, fuzzy data, neural networks.

I. INTRODUCTION

Associative memories have received comprehensive interest in
neural networks [1], [2]. The bidirectional associative memory-like
(BAM-like) associative memory is a two-layer heteroassociator that
stores a set of bipolar pairs. Owing to their easiness to be encoded
and high noise immunity, BAMs are suitable for pattern recognition,
intelligent control, and optimization problems. The original Kosko’s
BAM suffers from low storage capacity [2]. Thus, many efforts have
been made to improve the performance of Kosko’s BAM [3]–[5].
Some of these models strengthen the BAM architecture by using the
Hamming stability learning algorithm (SBAM) [3], the asymmetrical
BAM model (ABAM) [4], or introducing a general model of BAM
(GBAM) to improve the performance [5]. The capacity of GBAM is
claimed to exceed all the above BAMs [5].

Kosko’s fuzzy associative memory (FAM) is the very first example
to use neural networks to articulate fuzzy rules for fuzzy systems [6].
Despite its simplicity and modularity, his model suffers from extremely
low memory capacity, i.e., one rule per FAM matrix. Besides, it is lim-
ited to small rule-based applications. There has been a renewal of in-
terest in fuzzy associative memories in recent years. For instance, Yam-
aguchi [7] presented a method to represent fuzzy IF-THEN rules using
associative memories and carry out fuzzy inference using association; a
conceptual fuzzy set (CFS) comprised of distributed fuzzy knowledge
processing have been proposed by Takagi [8]. However, it is difficult
to apply FAM to complex knowledge processing, because associative
memories have very poor storage capacity. Chung and Lee [9] pro-
posed a multiple-rule storage method of a FAM matrix. They showed
that more than one rule can be encoded by Kosko’s FAM. However,
the actual capacity will depend on the dimension of the matrix and the
rule characteristics, e.g., how many the rules are overlapped. The ca-
pacity of this model depends on whether the membership function is
semioverlapped or not.

In this brief, we present a novel method of data processing using
polynomial bidirectional heterocorrelator (PBHC). A perfect recall the-
orem is established and the implementation of the PBHC model is
more efficient accordingly. This has a higher capacity for pattern pair
storage than that of the conventional BAMs and fuzzy memories. The
PBHC takes advantage of fuzzy characteristics in evolution equations
such that the signal–noise ratio (SNR) of data recall is significantly in-
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creased. Furthermore, we utilize a two-phase approach to demonstrate
the stability of fuzzy PBHC. Finally, the practical expectation value of
the capacity of the PBHC with fault tolerance in the average case is
estimated.

II. FRAMEWORK OF HIGH CAPACITY PBHC

A. Evolution Equations

Assume that we are givenM pattern pairs, which aref(X1; Y1),
(X2; Y2), � � �, (XM ; YM )g, whereXi = xi1, xi2, � � �, xin), Yi =
(yi1, yi2, � � �, yip). Let 1 � i � M , xij 2 [0; 1], 1 � j � n,
yij 2 [0; 1], 1 � j � p, n andp are the component dimensions of
Xi andYi, andn is assumed to be smaller than or equal top without
any loss of generality.xij , yij 2 f0=�, 1=�; � � � ; �=�g, fuzzy space
= [1, 0], � is a fuzzy quantum, and� is a fuzzy quantum gap. Instead
of using Kosko’s approach, we use the following evolution equations
in the recall process of the PBHC

yk =H

M

i=1

yik � ((u� kXi �Xk2)=u)M

M

i=1

((u� kXi �Xk2)=u)M

xk =H

M

i=1

xik � ((u� kYi � Y k2)=u)M

M

i=1

((u� kYi � Y k2)=u)M

(1)

whereM denotes the number of patterns in the PBHC,Xi, Yi, i =
1; � � � ;M represent the stored patterns,X or Y is the initial vector
presented to the network,xk andxik denote thekth digits ofX and
Xi, respectively,yk andyik represent thekth digits ofY andYi, re-
spectively,Z is a positive integer,u denotes a function defined as the
following equation

u =

M

i=1

M

j=1

kXi �Xjk
2 + kYi � Yjk

2 (2)

andH(�) is a staircase function shown as the following equation

H(x) =
0; x < 1=(2�)

bx + 1=(2�)c; elsewhere.
(3)

The graphic representation of the staircase functionH(�) is shown in
Fig. 1. Note that if�!1, thenH(x) � x for x 2 [0; 1]. Besides,u
is bounded according to (3).

B. Energy Function and Stability

The fact that every stored pattern pair should produce a local min-
imum on the energy surface to be recalled correctly accounts for why
the energy function is intuitively defined as

E(X;Y ) =

M

i=1

kX �Xik
2 � kX � Yik

2: (4)

Fuzzy data model using PBHC can be viewed as one kind of BAM.
Therefore, its stability can be elucidated by closely examining its two
phases of evolution, i.e.,X ! Y andY ! X. We have adopted
the SNR approach to compute the theoretical capacity of PBHC in the
average case without considering fault tolerance, which isM = (1 +
�)n=2 [1].

Fig. 1. The staircase function.

C. Analysis of the Capacity of PBHC with Fault Tolerance

Considering the required fault tolerance capability, we need to en-
large the area where the stored patterns reside. We introduce a basin
concept to the storage of patterns. The radius of the basin where the
target pattern locates is termed the attraction radiusr. In other words,
when the input pattern is located in this basin, the PBHC should be able
to recall the target pattern. For instance, suppose we initialize the PBHC
with an input patternX. If the distance betweenX andXh (the target
pattern) is less than or equal tor, this input patternX is expected to
recall the target patternXh and its corresponding patternYh. We, thus,
have the following conclusion.

Theorem 1: If kXh �Xk � r and the PBHC can recallXh given
X, then that the maximal capacity for a fuzzy PBHC to store pattern
pairs in the average case is

M <Mmax

=
(1=2) ln(6�=((M � 1) � (2�+ 1)))

ln((u� (n=9) � ((�+ 2)=(�+ 1))2)=(u� r2))

Z

:

(5)

Proof: According to (1), we will only discuss theY part of the
evolution equations without any loss of robustness here. We can rewrite
the left-hand side of (1) as

yk �

M

i=1

u� kXi �Xk2

u

M

=

M

i=1

yik
u� kXi �Xk2

u

M

= y1k �
u� kX1 �Xk2

u

M

+ � � �

+ yhk
u� kXh �Xk2

u

M

+ � � �

+ yMk

u� kXM �Xk2

u

M

: (6)

The largest noise that can appear is in the case which anyXi,
i 6= h, is just one component different fromXh (assume thatX is
the input pattern andYh is recalled expectantly). Meanwhile, the
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Fig. 2. The capacity of the PBHC in the average case without fault tolerance
radius.

other components ofXi and Xh remain the same. For instance,
Xh = (xh1; xh2; � � � ; xhn), andXi = xi1; xi2; � � � ; xin � 1=(2�)),
where xik 2 f0=�; 1=�; � � � ; �=�g, k = 1; 2; � � � ; n, and
yik 2 (0=�; 1=�; � � � ; �=�g, k = 1; 2; � � � ; p. We substitute the
kX � Xik with the attraction radiusr in (6). Equation (6), thus, can
be rewritten as

M

i=1

yik
u� kXi �Xk2

u

M

=
i=h

yik �
u� kXi �Xk2

u

M

+

M

i6=h

yik �
u� kXi �Xk2

u

M

= yhk �
u� r2

u

M

+

M

i6=h

yik
u� kXi �Xk2

u

M

(6a)

whereyk, yik, andyhk represent thekth digits ofY , Yi, andYh, re-
spectively. The first term in (6a) corresponds to the signal, and the other
terms are the noise. The power of the signal isS = [((u�r2)=u)M ]2.
Besides the first term, the remaining terms are actually the sum of
M � 1 independent identically distributed random variables. There-
fore, the noise of these terms isM � 1 times of the noise of a single
random variable. Assumeh = 1 for the sake of clearness. That is,
X1 = X is the input pattern pair andY1 is recalled expectantly. Sub-
stitutingX1 for X allows us to rewrite (6), and we let

v1 = y1k �
u� kX1 �X1k

2

u

M

� � �

vM = yMk �
u = kXM �X1k

2

u

M

: (6b)

Since all of thevi’s, i = 2 to M , have the same property, we select
v2 as the sample. By assuming thatX1 = (x11; x12; � � � ; x1n), X2 =
(x21; x22; � � � ; x2n), then we can get

�x21 = kx21 � x11k 2 f0=�; 1=�; � � � ; 1=2; � � � ; �=�g: (7)

Fig. 3. The practical capacity of PBHC in the average case with fault tolerance
radius(n = p = 10; � = 10; Z = 2).

TABLE I
THE PRACTICAL CAPACITY OF PBHC
(n = p = 10; � = 10; Z = 2)

Also assume that� is the difference of a fuzzy bit (fit). It is trivial to
derive the following probability function for the difference of a fuzzy
bit (fit)

P�t �x21 =
0

�
=

�+ 1

(�+ 1)2

P�t �x21 =
1

�
=

2 � (�� 0)

(�+ 1)2
� � �

P�t �x21 =
�

�
=

2 � [� � (�� 1)]

(�+ 1)2
=

2 � 1

(�+ 1)2
: (8)

Hence, the general form of probability function for the difference of a
fuzzy bit (fit) can be derived as follows,

P�t �x21 = kx21 � x11k =
g

�
=

2 � (�� g + 1)

(�+ 1)2
(9)

where1 � g � �. In addition, we can derive the expectation value for
the difference of a fit as follows:

E(�xi1 = kxi1 � x11k)

=

�

q=1

q

�
�
2 � (q + 1)

(�+ 1)2
=

(�+ 2)

3(�+ 1)
; i = 2 to M: (10)

The expectation value of the square of the difference of a fit can also
be derived as follows:

E(�x2i1 = kxi1 � x11k
2)

=

�

q=1

q

�

2

�
2(�� q + 1)

(�+ 1)2
=

(�+ 2)

6�
;

i = 2 to M: (11)
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Fig. 4. Comparison of storage capacity of PBHC, KBAM, SBAM, ABAM, and GBAM. (Thex-axis represents number of stored pattern pairs (i.e., value ofM),
while they-axis represents the percentage of correct convergence when the patterns in theX-space are presented to the memory.)

The mean of one noise term can be derived as

E(vi) =E
u� kXi �Xk2

u

M

� E(yik)

=E
u� kXi �Xk2

u

M

�

�

q=0

q

�
�

1

�+ 1

=
1

2
E

u� kXi �Xk2

u

M

; i = 2 to M: (12)

The expectation value of the power of one noise term can be derived as

E(v2i ) =E
u� kXi �Xk2

u

M
2

� E(y2ik)

=E
u� kXi �Xk2

u

M
2

�

�

q=0

1

�+ 1

q

�

2

=E
u� kXi �Xk2

u

M
2

�
2�+ 1

6�
;

i = 2 to M: (13)

The SNR must be greater than one to recall the correct pattern pair, i.e.,

SNR=
Signal Power

total Noise Power

=
S

(M � 1) � Noise

=
Signal

(M � 1) � (Noise term's Variance)
> 1: (14)

The variance of noise can be derived as Var(vi) = E(v2i ) � E2(vi),
sinceE(v2i ) > E(v2i ) � E2(vi), thus, the following inequality can
be obtained:

E(v2i ) > Var(vi): (15)

The above upper bound in (15) is the maximal noise power, called
Nmax, which is equal toE(v2i ). Then, the (SNRmin) of the PBHC is
shown in (16) at the bottom of the page. Next, the maximalZ in the
average case for PBHC is derived to accurately recall every stored pat-
tern pair according to (16) as follows:

Z <
1

lnM

� ln
(1=2) ln[6�=((M � 1) � (2�+ 1))]

ln[(u� n((1=3) � (�+ 2)=(�+ 1))2)=(u� r2)]
:

(17)

According to (16), the capacity can also be derived as follows:

M <
(1=2) ln[6�=((M � 1) � (2�+ 1))]

ln[u� n((1=3) � (�+ 2)=(�+ 1))2)=(u� r2)]

Z

:

(18)

III. SIMULATION ANALYSIS

Fig. 2 shows that the theoretical capacity of PBHC in the average
case givenn = p, � = 10, Z = 2. Fig. 3 and Table I reveal that
the practical capacityM of a PBHC with fault tolerance abilityr will
drastically decrease with the increase of the attraction radius.

Example 1: To evaluate a BAM-like associative memory, the most
important thing, perhaps, is its storage capacity. The storage capacity of
the GBAM [5] is a little greater thann, that of the SBAM or ABAM is

SNRmin =
S

(M � 1)Nmax

=
((u� r2)=u)M

2

(M � 1) � f[(u� n((1=3) � (�=2)=(�+ 1))2)=u]M g2 �
2�+ 1

6�

> 1 (16)
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Fig. 5. Capacity comparison of the PBHC versus BAM-like heteroassociator.

closer or equal ton, and the capacity of the Kosko’s rule is�0:15n. By
contrast, the PBHC provides a significantly high capacity of storage for
patterns as shown in (18). The capacity of PBHC, thus, is much greater
thann. In order to compare the storage capacity of PBHC with that
of Kosko BAM (KBAM), SBAM, ABAM, and GBAM, we randomly
generate desiredly stored pattern pairs. For the memory size(n; p),n =
p = 10, we compute the percentage of successful tests which make all
theM desired pattern pairs stable,M = 1; 2; 3; � � � ; 20. 1000 test sets
consisting ofM desired pattern pairs are randomly generated. A test
is considered successful if all theM pattern pairs in the test set are
stable. That is, they can be recalled correctly and correspondingly. The
percentage of successful tests for the combination(n = p = 10;M)
is plotted in Fig. 4. If the percentage of successful tests forM pattern
pairs is over 90%, we consider thatM pattern pairs can be stored in
the memory [5]. In Fig. 5, the previous works are plotted together to
show the comparison. Because the numerical values of the PBHC is
relatively much larger than those of the conventional BAMs, a log scale

is used so that the contrast is more substantial. Notably, we use PBHC
with � = 1 in order to derive a fair comparison with other BAM-like
designs which usually process either binary vectors or bipolar vectors.
According to our simulation results, the PBHC outperforms those of
previous investigations in capacity comparison.

IV. CONCLUSION

According to our results, the PBHC with fault tolerance abilityr
still provides an extremely high storage capacity for patterns. The pro-
posed energy function ensures that every stored pattern pair is located
in a local minimum of the energy surface. The practical capacity of
the PBHC with fault tolerance in the average case is estimated, thereby
allowing us to predetermine the size of the PBHC by the demand of
capacity possible.
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