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Abstract

A method for modeling the learning of belief combination in evidential reasoning
using a neural network is presented. A centralized network composed of multiple bi-
directional associative memories (BAMs) sharing a single output array of neurons is
proposed to process the uncertainty management of many pieces of evidence simulta-
neously. The convergence properties of the multi-BAM network are proved. The
combination process of evidence is considered as a resonant process through the multi-
BAM networks. Most important of all, a majority rule of decision making in presen-
tation of multiple evidence is also found by the study of signal-noise-ratio (SNR) of the
multi-BAM network. Some simulation examples are given. The result is coherent with
the intuition of reasoning. © 1998 Elsevier Science Inc. All rights reserved.

Keywords: Bidirectional associative memory; Multi-BAM; Operation modes; Evidential
reasoning; Belief function

1. Introduction

Neural networks have been drawing increasing interest as powerful tools to
solve different tasks, [1,2]. An associative memory is one type of neural network
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which essentially is a single functional layer or slab that associates one set of
vectors with another set of vectors. Kosko [3,4] proposed a two-level nonlinear
network, bidirectional associative memory (BAM), which extends a one-direc-
tional process to a two-directional process. One beneficial characteristic of the
BAM is its ability to recall stored pattern pairs in the presence of noise. Wang
et al. [5] discovered some flaws in Kosko’s coding scheme and proposed two
alternatives, multiple training and dummy augmentation, both of which enhance
BAM’s ability to find the global minimum.

Artificial intelligence researchers are exploring the utilization of neural
networks in an expert system to handle uncertainty management [6-9]. The
utilization of neural networks in evidential reasoning is the essence of the
reasoning process, which is a forth-and-back reverberation process for uncer-
tainty management. Assume people are given some evidence to “‘estimate’ the
credibility and the plausibility of a hypothesis, then the thinking behavior of
people is to take some evidence into consideration and then gradually use the
rest of given information to adjust the uncertainty so that a possibly optimal
“estimate’ for the credibility or the plausibility of the hypothesis can be
reached. It is analogous to a system, which is excited by some input infor-
mation, tending to reach a local minimum of the global system energy. The
learning algorithm of the Boltzmann machine is a good instance of this kind of
forth-and-back process. The feasibility of evidential reasoning by the neural
networks has attracted much attention [6-8]. Since Shastri’s method [8] has to
use very complex nodes, it is more likely to utilize clusters of neurons instead of
single neurons. Furthermore, since Shastri’s weights are based on relative
frequency of occurrence, they are only roughly compatible with the biologically
plausible Hebbian learning rule [9]. Hsu et al., has implemented Dempster—
Shafer’s rule (D-S theory) using neural networks [3]. However, Hsu’s method
is not appropriate for the management of uncertainty reasoning because of the
intrinsic shortcomings of the D-S theory [10,11]. In addition to the above
works, the utilization of other neural networks for evidential reasoning can be
found in [1,2,6,9,12].

Among the problems of evidential reasoning, conflicts caused by sequential
programming and partial dependency are pretty hard to be fully resolved
[10,13]. The basic reason is all of the traditional methods for evidential rea-
soning are developed for two pieces of evidence. Thus, when there are more
than two pieces of evidence, conflicts will happen if the combination orders are
different [11]. Wang et al., pointed out the importance of simultaneously
processing many pieces of evidence [11], and we further proposed a method
using multiple BAM structure to handle the demand of combining many evi-
dence at the same time [10]. Because the relationship of evidence and the hy-
pothesis 1s always referred to be an 1F-and-THEN relationship. Hence, this IF-
and-THEN format can be easily transformed into numbers which can be
stored in memories, more specifically, associative memories. If people intend to
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evaluate the degree of a piece of evidence supporting a hypothesis, then they
simply present the evidence to the memories to the recalled information. If
there are more than a piece of evidence, then they can present all of the evi-
dence and see the result of their common output. If the more evidence support
one hypothesis, the result should be drawn closer to this hypothesis.

We also discuss the majority rule of decision making for handling many
evidence at the same time. The majority rule means if more than half of the
presented evidence support one hypothesis, though the rest of the presented
evidence do not, the belief combination of all of these evidence must be
dominated by the hypothesis. The bounds of a majority factor, &, 1s found and
proved by the SNR approach [14]. The meaningful contribution of the ma-
jority rule is to predict the recall of certain common output patterns. This rule
is intuitively in accordance with the human reasoning.

The rest of this paper is structured as follows: Section 2.1 briefly introduces
Kosko’s previous work on the BAM; Section 2.2 introduces the discrete multi-
BAM network and discusses its convergence property to recall pattern pairs;
Section 2.3 establishes the foundation of the majority rule of the multi-BAM
network by using the SNR analysis approach; Section 3 shows some examples to
illustrate the theories given in Section 2; and a conclusion is given in Section 4.

2. Framework of the multi-BAM network
2.1. Theory and structure of a BAM network

BAM was first introduced by Kosko [3,4]. The basic structure of a BAM is
shown in Fig. 1. An array of n neurons, a;’s, in the bottom of the network, are
input units; and another array of p neurons, 4;’s, in the top of the network, are
output units. An n x p matrix M is interpreted as a matrix of synapses between
the input neurons, a;;’s, and output neurons, b;;’s. Matrix entry m;; is a synaptic
connection between g; and b;. The sign of m;; determines the status of the
connection: excitatory if mj;; > 0, inhibitory if m;; < 0. The magnitude of m;;
determines the strength of the connection. The formation of the matrix M is
based on the following operations. Given N training sample pairs, which are

{(A[,B| )* (AZ"Bz)! s 1(‘41\7:31\')}:
where

A:' - ({1”30523' .. 1airr): Bi == (b:'labrz,~ - '3bip)-

a;; and b;; are of either on or off status. The on and off status can be repre-
sented by {1,0} in the binary mode or {1, —1} in the bipolar mode. The matrix
M is constructed as
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N
M:ZXI'T“’ (D)
i=1

where X; and Y; are the bipolar mode of 4; and B;, respectively.

Suppose we wish to recall one of the nearest (4;, B;) pairs from the network
if any input pattern A4 is presented to the network. Starting with this initial
condition A4 which is closer to one stored pattern 4; than any other pattern,
Kosko suggested the following forth-and-back operation to recall the B which is
relatively close to B;. By using a Lyapunov energy function, Kosco also proved
that the forth-and-back reverberation process will converge to a final pair
(A4;, B;) with local minimum energy [3,4]. The BAM system energy is defined as

E(A,B) = —AMB", (2)
2.2. Discrete multi-BAM network

For evidential reasoning, many pieces of evidence could be presented to the
processor simultaneously. This motivates us to explore the feasibility of or-
ganizing more than one BAM to handle the uncertainty of evidence. We
propose a multi-BAM neural network, which is shown in Fig. 2. In the multi-

Fig. 1. The configuration of the BAM network.
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BAM network, there are L BAMs with their individual array of input neurons,
but these L BAMs share the only one array of output neurons.

Suppose there are L BAMs in the network, and (4, B;) is a training pair of
matrix M,, 1 <¢ < L. Each matrix M, is formulated similarly to Eq. (1) by 4
and B;. In the synchronous mode, L input patterns are presented to the L input
arrays of the network, respectively, and fed through the individual M,’s to
produce the individual B} ’s. Since every single entry of every B;, expresses how
strong it wants to determine the on or off status of the corresponding output
neuron, the final status of every output neuron should be determined by the
sum of every B.. Therefore, the entire operation is
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Fig. 2. The structure of a multiple-BAM network.
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L
(=0, 5= 3°m)
g=1

(4, — M: — B

L
(Aw — My — By, By = ZBII}')

g=1

(Ayr — MJ — By)

where A, and By are the final state of the gth BAM. Ideally, the individual
(Aqyr, Byr) pair will be relatively close to one of the training pairs of the gth BAM.

The following theorem guarantees the convergence and stability of a multi-
BAM network.

Theorem 1. Given a multi-BAM network with L BAMs as described above, its
overall Lyapunov energy defined as

L
E = E,A,B).
g=1

The total energy will converge to a local minimal value.

Proof. Let the ith neuron of input array of the gth BAM be denoted as agi, and
the jth neuron of the common output array B be denoted as b;. Henceforth, we
can derive the following equations by the matrix inner product operations.

ZAq""f(’: = Zzaquw‘,h (3)
MT’ Zb M yifs 4)

where M/ is the Jth column of M,, and M is the ith row (column) of M, (M)
Eqg. (3) shows the input sum to b;, and Eq (4) is the input sum fed backward to

a,. Zero is taken as the threshold for all neurons. Therefore, the threshold
functions for the neurons of the network are

L BMT >0, .
“T o iraMr <o, )
1 if Y A .M/ > 0,
=l TN ©
0 if Y, A,M <0,
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The energy of a BAM is defined by Eq. (2), which will decrease along discrete
trajectories in the space {0, 1}" x {0,1}”. This property can be shown by the
fact that changes in state variables result in AE < 0. Similarly, we can show
that the multi-BAM network has the same property to guarantee the conver-
gence of the network energy. The overall energy of the multi-BAM network is
expressed as

E= ZE ZZZ“W iMgij
= —Zzzawb ”I‘W ,-;‘-ijmrﬁ-j, (7)

g#r itk J
DD RYITID ) D ®
i j#k
We also note that Aa,, Ab; € {—1 ,0, 1} for the binary mode, and Aa,;, Ab; €
{=2,0,2} for bipolar mode, thus implying that only the nonzero state changes
have to be taken into consideration. The energy change AE = E, — E, caused
by the state change Aa, can be derived from Eq. (5), which is

Aark —Zh iy = —BM'™. (9)
The right-hand SIde of Eq. (9) is the negative input sum to neuron a, shown in
Eq. (3). Henceforth, if Aa, > 0, Eq. (5) shows BM,™* > 0, and then it is con-
cluded that AE = —AaBM'™ < 0. On the other hand, if Aa, <0, Eq. (5)
shows that BM™ < 0, and thus AE = —Aa, BM < 0 still holds. Similarly, the
energy change due to the other state change by is expressed as

A—b; —ZZaq,mmk— ZA‘, (10)

Again we can recognize that lhe right portion of the above equation is the
negative input sum to neuron b; form Eq. (4). Thus Ab; >0 only if
S AME>0,  and  Ab <O only if 3 AM;<0.  Hence
AE = —Ab; Z A M} < 0 in either of the above two cases.

The previous dlSCUSSlOI‘l ensures AE < 0, which indicates the overall energy
of the forth-and-back reverberation process of the multi-BAM network will
decrease in the space {0, 1}" x {0,1}”, as we expected.

2.3. A majority rule of decision making for the multi-BAM network

2.3.1. The majority rule of the strict case

According to the discussion in the previous sections, every single BAM tends
to store their own pattern pairs in the local minimums of their network,
respectively. Assume there are L single BAMs consisting of a multiple BAM
network, and these BAMs share a single output array of processing units. If



186 C.-C. Wang, H.-S. Don | Information Sciences 110 (1998) 179193

these individual BAMs are activated by respective input patterns and they
don’t “agree” to have the same conclusion, i.e., the same output pattern, what
will be the final result of the whole network. This problem is like a reasoning
mechanism which takes many evidence into consideration at the same time in
order to reach an optimal estimation of the hypothesis.

Hence, we formulate the entire problem as follows: Given a multi-BAM
network composed of L single BAMs, what is the minimal majority factor
p,p € [0,1], to make pL BAMs, which are vowing a common output pattern
and the other BAMs are not, dominate the common output? In other
words, we are interested in exploring the lower bound of the pL which can
force the output pattern to be their common output pattern. Note that in
fact the pL denotes an integer, Ceiling(pL), which is the smallest integer
larger than pL. In the following text, we simply use the pL without any loss
of robustness.

Belore we discuss the lower bound of pL, we have to study an extreme case
in which a upper bound of pL will be derived. In the rest discussion of this
section, X's and Vs are the bipolar mode of As and Bs, respectively. Assume the
pattern pairs, (X, Y,), (X2, %), ..., (X,,. Y,), are encoded in lst to pLth

BAMEs, respectively, and pattern pairs, (X{,z 1)1, Ys), ..., (Xz1, Y;), are stored in
(pL+ 1)th to Lth BAMs, respectively. Thus, when input patterns,
X, Xap, ..., Xy, are presented at the input array of each individual BAM,

what would be the result of output?

Suppose the ¥, is the output pattern that we are looking for, i.e., it is deemed
as the signal. By the SNR approach, [14], the evolution equations, Egs. (5) and
(6), for BAM can be rewritten in a bitwise manner.

() (S )

g=1 i=1 k
pl n
= 5gn (ZZZ Xari Xqki y;\; + Z ZZ Xgsi Xqki yﬁj)
g=1 i=1 k g=pl+1i=1 k=
pl n Pl n N
(355 s+ S5
q=11i g=l i=1 k#r
Z Z(r‘f” Xgsi) Yo+ Z ZZ(-‘%’-\T th‘)ykj)
g=pl+1i= g=pl+1 i=1 k#s
ol 0 N
= sgn (pL nyy+ (1 — p)Lny; + ZZZ(A‘W X ki ) Vis
g=1 i=1 k#r

Z i:Z(xq.\'a Xgki )yﬂ‘j) ’ ( Il )

q=pltli=1 k#s
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where the first term is the desired pattern, called signal, and the rest terms are
deemed as noise. On the other hand, the largest power of noise, which means
all of the rest (1 — p)L BAMs support another output pattern Y, is

Noise = n*(1 — p)L + pL(n —2)* (N = 1) + (1 — p)L(n — 2)*(N — 1)
=n*(1 — p)L+ (n —2)*(N = 1). (12)
And the power of the signal is
Signal = pL n’.

In the above noise power equation, we assume not only all of the rest (1—
p)L BAMs support another output pattern, but also this pattern is the closest
pattern to the desired one. If the desired output is intended to be recalled, then
the sufficient condition is the Signal > Noise according to the SNR approach.

Thus we can conclude the lower bonds for this definite recall condition of p,
called strict lower bound, 1s

pLn® > n*(1 = p)L + (n — 2)*(N — 1),

I (n—2°(N—1)
p > 3 + Ly . (13)
Note that this lower bound of p means any p bigger than this threshold can
force the output pattern to be the common desired output pattern of the pL
BAMs in the network. However, if the bound of Eq. (13) is larger than 1, it
means even all of the BAMs support one output pattern, there is no guarantee
to recall this common output pattern.

2.3.2. The majority rule of the general case

In the above extreme case, we assume all of the rest (1 — p)L BAMs support
another same output pattern which is only one bit Hamming distance away
from the desired pattern. Generally speaking, however, most of the reasoning
problems won’t be this special. We will consider a general case in which the pL
BAMs still support a common output pattern, but the rest (1 — p)L BAMs do
not support the same output pattern, i.e., they individually support their own
output patterns, respectively. Based upon this assumption, then we can derive
the following results.

First of all, we have to discuss what the capacity of a single BAM really is in
terms of a signal-to-noise ratio approach. According to Kosko’s formulation

[3].

N
Y=XM=XXNY+) (XX, (14)

i#h

=n¥,+ Y (X XY, (15)

i#h
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[t is natural to assume that the stored pattern pairs are drawn from {—1,1}"
with uniform probability. Hence, the first term corresponds to the signal,
Signal, which has the power n*. The second term, the noise, has a zero mean
and the variance as follows:

n—1 n m L
3 2 1
E[v]] =2 E n=2(k+1)]" (%) crl=2 E [m — 2k — 1] (E) (O
k=0

k=0
m=n-—1.
Assume

m

X, ); Zrﬁvm ACm - X+ V)m!

k=0
h(}’ — Z.Vm 2k— ]Cm
Then, we can get

yh' () = Z(m — 2k —1)y" 2%- IC,,,

k
(Wh'(y)) = Z(m — 2k — l)“ =2k "’C"’
%
If y =1, then
(H(1) = (m—2k—1)’Cp.
k
It is trivial to derive {’Vh’(y))’ and SUbStitU[e in y= 1. The result is

(H(1) =2(m+ 1)2"7" = g2 1,
Hence the signal to noise ratio, i.e., the capacity, of Kosko’s BAM is

n? n
SNRpam = = . 16
Now let us analyze the SNR of the multi-BAM network. The noise terms of
Eq. (11) are the 2nd, 3rd, and 4th terms. The power of 2nd term is

Noise;, = (1 — p)Ln’ .
As for the 3rd and 4th terms of Eq. (11), they are actually sums of pL(N — 1)
and (1 — p)L(N — 1) independent identically distributed random variables,
respectively. Therefore, the variances of the 3rd and 4th terms are pL(N — 1)
and (1 — p)L(N — 1) times the variance of a single random variable. Hence, the
power of the 3rd and 4th terms are, respectively,

Noises = E(vj)p L, Noiseg = E(v?)(1 — p)L.

In short, the total noise power can be represented as
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Noise = Noise, + Noise; + Noisey
=l =p)Ln® 4+ pL2(N = 1)n+ (1 —p)L2(N — 1)n
= (1 - p)Ln*+L2(N —1)n.
Therefore, i’ we want a stored pattern pair to be recalled in a multi-BAM
network, its SNR must be greater than 1, i.e., the power of sighal must be
larger than that of noise.
N—-1

2 b] l
pLn” > (1—p)Ln”+L2(N - l)n,p)i-i—T.

2.3.3. Theorem of the majority rule for a multi-BAM network

Given a multi-BAM network with L single BAMs, pL. BAMSs support a same
common output pattern, where p € [0,1]. The condition for the output pattern
of the network is the same as the one supported by the pL. BAMs is

1 1

If the lower bound in Eq. (17) is larger than 1, then it means even all of the
BAMs in the network support one output pattern, there is no guarantee to
recall this output pattern.

By the above theorem, please note because the SNRgan is larger than 0, the
lower bound of k can be simplified to be § which complies the human intuition.
That is, if more than 50% of the evidence supports a hypothesis, then the
reasoning resuft mos¢ fikely would de thie same as s fiypochesis.

3. Simulation examples

In this section, we use some examples of belief combination in evidential
reasoning to illustrate the theoretical results of the multi-BAM networks dis-
cussed in Section 2.

Example 1. This example is used to prove the bidirectional stability of multi-
BAM networks. Given a 2-BAM network, the training pattern pairs for the
first BAM of the network are as follows:

Ay = (1T101600110010111101010000000001),

Ay = (11101000110010111101010000000010),

Ay = (11101000110010111101010000000100),

Ayg = (11101000110010111101010000001000),

By = (110011001 1001011001100},

B, = (110011010100101110011100),
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By = (101011011100101101100011),
Bs = (100100011100101101100011),
the training pairs for the second BAM of the network are,

A«| = (ITT10110101001101011101000000001),
(11110110101001101011101000000010),

3= (11110110101001101011101000000100),
Au = (11110110101001101011101000001000),

where the B;’s of the lower part of the network are the same as those of the
upper part. Then, M, and M, can be computed by Eq. (1). Let 4;; and 45, be
employed as inputs of the two parts of the network, respectively. The computer
simulation results of the 2-BAM network are the following;

k

30 T T T T

L 1 |

0 20 40 60 80 100

Fig. 3. The minimal p in the strict case and the general case.
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Iteration I, FE = —592.
[teration 2, E = —2640,
By =(1 17001101 1T1001011111100T11).

The network converges very quickly to a stable state, which verifies the pre-
diction of Theorem 1. Note that the By, i1s not equal to B,. The reason is the
strict lower bound p according to Eq. (13) is 1.76, which is larger than 1. This
implies that even all of the BAMs support one output pattern, there is no
guarantee to recall this common output pattern.

Example 2. This example illustrates the prediction of the majority rule of the
multi-BAM network. First, let us use Fig. 3 to demonstrate the lower bound of
p in the majority rule. In this example, » = p = 8. The numerical data is
tabulated in Table 1.

According to the definition of lower bound p, p is a number between 0 and 1.
That 1s, when the lower bound of p is larger than 1, there is always a chance
that the network might fail to be converged to a desired output pattern even if
all of the input patterns support that output pattern. In this example,
n = p = 8. Hence, if each single BAM only stores 2 pattern pairs, it is guar-

Table 1
The minimal p in the strict case and the general case
N (number of pairs) Strict case General case
2 0.781250 0.625000
3 1.062500 0.750000
4 1.343750 0.875000
5 1.625000 1.000000
10 3.031250 1.625000
15 4.437500 2.250000
20 5.843750 2.875000
25 7.250000 3.500000
30 8.656250 4.125000
35 10.062500 4.750000
40 [1.468750 5.375000
45 12.875000 6.000000
50 14.281250 6.625000
55 15.687500 7.250000
60 17.093750 7.875000
65 18.500000 8.500000
70 19.906250 9.125000
75 21.312500 9. 750000
80 22.718750 10.375000
85 24125000 11.000000
90 25.531250 11625000

95 26.937500 12.250000
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0.95 -

Fig. 4. The minimal p in multi-BAM networks with different L.

anteed that a common desired output pattern will be recalled if more than half
of the BAMs intend to recall this pattern. If each individual BAM stores less
than § pattern pairs, it is generally ensured the desired common patterns will be
recalled. In the following, we use different multi-BAM network having different
number of BAMs to verify the prediction of the majority rule. In the following

Table 2

The strict case and the general case using p = Ceiling (551) + 1

N (number of pairs) L=2 L=3 L=4 L=5 L=6 L=7 23=L =8
2 S S S S S S S

3 S S S S F F F

4 S S S S F F F

5 S S S F F F F

6 F F F F F F F

7 F F F F F F F

=8 F F F F F F F

S = Success, F = Fail.
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simulation, Ceiling(%5!) + 1 of L BAMs support one common output pattern,
and all of the pattern pairs are randomly generated. The p value of the sim-
ulation is shown in Fig. 4. The simulation results are tabulated in Table 2.

4. Conclusion

A multi-BAM neural network has been introduced for the belief combina-
tion in evidential reasoning. It is proved to be bidirectionally stable, which
ensures the model’s ability to reach a local energy minimum. The multi-BAM
network facilitates the learning of the belief combination without the loss of
robustness, and it also reduces the computation complexity. Two majority
rules and their respective bounds for the majority factor, p, are presented.
These rules will help researchers to use and predict the result of evidential
reasoning. The majority rules comply with the intuition of evidential reasoning.
This network provides the ability to process many evidence at the same time
reaching a consented hypothesis.
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