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Data Compression by the Recursive Algorithm of
Exponential Bidirectional Associative Memory

Chua-Chin Wang and Chang-Rong Tsai

_Abstract—A novel data compression algorithm utilizing the of associative memories [5], [7], [15], it is feasible to apply the
histogram and the high-capacity exponential bidirectional as- similar methodology to retrieve the vector table in data com-
sociative memory (eBAM) is presented. Since eBAM has been ,raggion/decompression. We therefore develop the prototype

proved to possess high capacity and fault tolerance, it is suitable : - . -
to be utilized in the data compression using the table-lookup of the exponential bidirectional associative memory (eBAM)

scheme. The histogram approach is employed to extract the algorithm integrated with histogram approach to examine the
feature vectors in the given data. The result of the simulation of feasibility.

the proposed algorithm turns out to be better than the traditional The eBAM has been proposed by Jeetyal. [5] and

methods. proved with high capacity by Wang [15], [16]. Its intrinsic
Index Terms—Bidirectional associative memory (BAM), expo- high capacity encourages the encoding of pattern pairs for
nential BAM, histogram, SNR, vector quantization (VQ). feature vectors of given data. The compression processor

and the decompression processor are symmetric and fave
neurons attached to the transmission channel améurons
l. INTRODUCTION on the I/P and O/P, respectively, while < p. We will

HE objective of data compression—a high compressidfse the histogram method to extract the feature vectors of
rate using a small amount of space with low distortion dhe given data, and then encode these feature vectors in the
the decompressed data—has long been a problem. Since&@BAM's. Thus, the data compression and decompression can
advent of multimedia systems, data compression has beerPgrachieved. The most attractive reason for using the eBAM
unresolved problem mainly due to the exchange of treme®s the processors is that this associative memory has a high
dous amounts of image, video, speech, and text data. Mdi@gpacity to encode vector pairs and fault tolerance ability
approaches have been proposed for data compression, &gretrieve the encoded vector pairs [15], even in a lossy
vector quantization (VQ), JPEG [14], MPEG [3], [10], CD-Itransmission channel.
[12], and DVI [11]. As to real-time video data compression, In this paper, we adopt the histogram approach to build
Frost [2] and Huang [4], respectively, have detailed the# so-called ordered histogram feature vectors table and then
methods. Most of the approaches are prone to generate erk§i® the eBAM to compress/decompress the given data. De-
if the transmission channels are not flawless. Besides, nedgdled simulations have been conducted showing impressive
networks have also been involved in the data compressig@rformance.
application. The effect, however, might not be outstanding
[9]. The viewpoint of the prior neural network applications for II. FRAMEWORK OF THE eBAM ALGORITHM

the data compression is that the researchers deemed the dai,, gata compression/decompression algorithm can be di-
compression and decompression are learning tasks [1], [3led into two parts: the histogram preprocessor and the
[13]. Even though this viewpoint is correct in some cases, tRgaM recursive table lookup. The former one is dedicated
current neural networks cannot have satisfactory performanggeyiract the feature vectors of the given data, while the later
Fig. 1 is a prototype of a transmission channel for daja gesigned to compress the feature vectors into tag vectors
compression; the number or the dimension of the vectqggich will be transmitted in the channel, and decompress the

traveling in the transmission channel must be less than thatt% vectors at the receiving end by recursive table lookup.
the input and output vectors. Both the compression processor

and decompression processor are two associative memoﬂe%)rdered Histogram

which are encoded with desired feature vectors of given _ _ ]
data. Hence, how to encode the feature vectors efficientlyAlthough the histogram approach is a well known skill,

becomes an important issue. Thanks to the evolution concéfst have to redefine it more clearly so as to integrate with
the eBAM recursive algorithm. Suppose we are given a set

of original data vectorsA = {ay,as,---,ap} wWherea;
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Fig. 1. A prototype of the data compression/decompression system.

of the unique vectors aoft and count the number of repetitionfollowing pseudo codes:

of each unique vector. Thus, a histogram ma an be
q g PR initialization: k= 1,G =0, B

defined as while (B % 0)/{

find 34,¢; > ¢;,V) # 15

H:A— B, WhereB:{bl,bQ,---,bN} gk = bi;

count(gr) = ¢;
where B is called the histogram tabley is the size of the G=GU{n};
table, andy;, b; € A,b; # b, for i # j. According to the above B =B - {b};
definition, theH operator partitions thd into N groups, while k=Fk+1;
each group is represented by a vedipand a count number }

associated with this group
We call theG is the ordered histogram table of data set

Ag; € G,i=1,2,--., N the ordered feature vectors.
Therefore, we have an ordered histogram in which the

where aj = b;. feature vectors of the given data are listed according to their

individual importance, i.e., the number of the repetitions.

coun{b;) =no. ofay, € A,k=1,---,D,

For the sake of simplicity, we usg to denotecount(b;) in
the following text. B. eBAM algorithm

RepetitionsofavectorimpIythedegreeoftheimportanceofBefore the discussion of the whole data compres-

this vector. In other words, repetitions imply feature vectors. 's%n/decompression system, it is necessary to discuss the
the procedure of data compression/decompression, we always and its characteristics. Suppose we are giveh
vow to keep feature vectors as much as possible such tB olar pattern pairs to be encoded, which are

the distortion of the decompressed data will be as small a
possible. Therefore, it is necessary to sort the above histogram {(X1, Y1), (X2,Y2), -, (Xar, Yar)} (1)
table B according to the count associated to each vectds in

where

OH: B — G, where G = cee L gN
o {917927 791\} Xi:(xil,.’ll'ig,"',xin), Y;:(yilvyi27"'7yip)

wherecount(g;) > count(ga) > ---count(gy) andg; € B. X, # X,;,1# j andY; #Y;,i # j. Instead of using Kosko’s

The entire operation of th€)H operator is listed as the approach [6], we use the following evolution equations in the
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recall process of the eBAM
( M
1, i) yadb™ ¥ 20
Yk = v
—1, i) yadb™ Y <0
\ =1
( M
1, i) aab Y 20
T = s )
—1, i) aab®Y <0
\ =1

where X and Y are input retrieval pattern vectors.is a
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C. Ordered Histogram Combined with eBAM

Since an ordered histogram can be extracted from any given
data, it is convenient to utilize the histogram to proceed the
data compression. The basic idea is to encode the important
feature vectors of the histogram table in the eBAM, because
eBAM is proved to possess high capacity and low bit-error
probability. The details of the eBAM recursive algorithm,
hence, can be tabulated as follows.

1) Select the firstV’ important feature vectors from the
ordered histogram as the vectors to be encoded and
transmitted, wheréV’ < N. Hence,N’ determines the
compression rate and the quality of the decompressed
data. If theN’ is large, then the compression rate will
be low but the quality of the decompressed data will be

positive numberp > 1 while “.” represents the inner product
operator.x; and z;;, are thekth bits of X and the X,
respectively, angy andy;;, are forY and theY;, respectively.  2)
The reasons for using an exponential scheme are to enlarge the
attraction radius of every stored pattern pair and to augment the
desired pattern in the recall reverberation process. The energy

high, and vice versa.

Generate a uniquig vector for each selected feature
vector randomly. The dimension of the tag vectars,
must be smaller than that of the feature vecterslf

not so, then the data compression would be meaningless.

function of this network is defined as
M M

E(X,)Y)= —Z pYeX _Z pYiY

=1 i=1

(3)

The above energy function places every stored pattern pair

in its own local minimum on the entire energy surfaceb if

is large enough [15]. During the recall reverberation process,
the X andY vectors will recall each other recursively and
alternatively until theE(X,Y") reaches a final value which
is supposed to be a local minimum. The convergence of this

process has been proved in [5] and [15].

We have computed the capacity of the exponential BAM

[15]

2n—2b4
(1 + b—4)n—l
where n is assumed to thenin(n,p) without any loss of

generality.
In the above equation, the given pattern, sayto recall

M<1+4 4)

Note that the dimension of the tag vectors depends on
N’. In order to represen¥’ vectors, then the dimension
of the tag vectors must be at ledsg, N'. For instance,

if first 64 feature vectors are chosen, then at least 64 tag
vectors are needed. That implies the dimension of the
tag vectors idog, 64 = 6.

3) Then the vector pairs encoded in eBAM, i.e., the fea-
ture vectors table, are transmitted. Every vector of the
given data is present to the compression eBAM such
that a corresponding tag vector will be recalled and
transmitted.

The decompression eBAM receives a tag vector and then
recall a corresponding feature vector.

Basically, the eBAM data compression/decompression
method utilizes the characteristics of the eBAM, high capacity,
low error probability, and fault tolerance, which can be
concluded from Theorems 1 and 2. In order to show its
performance, several indexes for multimedia and image
processing are defined as follows and then compared with

4)

the corresponding pattern pair is exactly the same as onePdfer methods.

the storedX;’s so that the corresponding will be recalled.
Suppose we initialize the eBAM with an input pattetH,
which is » bits away from the nearest pattertk;, where
r < (n/2). (If » > (n/2) then X will be closer toX), than

X;,.) And this input pattern, X can still recall the nearest

pattern,X; and its corresponding pattein,. In Appendix I,
we have proved the following conclusion.
Theorem 1: Given a attraction radius; wherer < (n/2),

the maximal capacity for an eBAM to store pattern pairs is

2(n—2)

(n—r=1) p4r=2"
Theorem 2: The bit-error probability of the eBAM is
1 (M _ 1)1/22(—(n/2)+1)(n —r— 1)1/2

\/% p(4=2r)
p(8—4r)
PO M Z 1) 2 n—r— 1)

M < Mmax =1+ (5)

P, ~

(6)

Compression RateThe ratio of the size of the original data
to the size of the compressed data.
Dxn
Dlogy N' + N’ x (n +logy N7)’
Signal-to-Noise Ratio:The similarity of the decompressed
data relative to the original data

CDR = )

SNR = 10 x logy,

wherez; denotes the original vectors; is the decompressed
vector, and 255 is a heuristic constant. Note that the de-
nominator of the argument of thlyg,, (-) is the average
of the difference, or called error, between the original data
set and the decompressed data given by the eBAM method.
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Fig. 2. The original picture. Fig. 3. eBAM method BK = 4, N' = 8).

Hence, if; = z;,V i it means a perfect recall of the original
data after the compression—decompression. Then, the SNR is
approaching 100. Otherwise, if the average of the difference is

large, the SNR will be dramatically reduced. It is a nice index T

to compare the performance of compression/decompression

methods. i
[ll. SIMULATION ANALYSIS

In order to show the performance of the eBAM recursive
compression/decompression algorithm, we have done several E E
simulations which will be compared with a standard VQ - L |
algorithm [8], [9]. In the following, we have conducted a
series of simulation to illustrate the effect of the eBAM

algorithm.

Example 1: A 256 x 256 original picture is shown in
Fig. 2. Since the picture occupies a lot of memory, it is
necessary to quantize the picture into small blocks which then *» |

will be compressed and transmitted. We defii&” as the
number of pixels of one side of the small blocks anas the
number of pixels of one side of the picture. Thus, the CDR and
SNR defined, respectively, in (7) and (8) can be rewritten as
Fig. 4. eBAM method BK = 4, N’ = 32).

BK x BK

CDR = ., N'x(BK?+log, N') ©) the performance of data compression. Figs. 3—6 show the
logy N+ L?/BK? results of using eBAM algorithm withV' = 8, 32, 64,
128, respectively. In these pictures, the chosen block size is
, BK = 4 which means the dimension of the feature vectors
255

SNR =10 x log;,

. (10)

and the data vectors are 16. Thus= 16 andp > log, N’.

Z (2 — &) (s — &) In our simulations,p = log, N’ is chosen. It is clear that
i when the number of the chosen feature vectors increases,
D the quality of the picture improves. However, Figs. 7 and 8

Note that the function of the codebook in the standashow a disappointing results of using the VQ method even
VQ method is similar to that of the feature vectors tabléhough the size of the code book is as large as 128 and 256,
The size of the codebook and the vector table will affecespectively.
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Fig. 5. eBAM method BK = 4, N' = 64). Fig. 7. VQ method BK = 4, codebook = 128).

NSYSU NSYSU

N.N.LAB N.N.LAB

Fig. 6. eBAM method BK = 4, N' = 128). Fig. 8. VQ method BK = 4, codebook = 256).

Note that if the eBAM approach is used, then the overall

and repeat the same procedures. The results of the eBAX/IiS 150. That is the reason why there are no results for the
method are shown in Figs. 9-12. In contrast, the results §#S€SY’ = 256 and N’ = 512. In short, the eBAM data
the VQ method are shown in Figs. 13 and 14. For the sak@mpression/decompression has been proved to be feasible
of clarity, the SNR of the eBAM methods are graphicall@d powerful. _ o
illustrated in Fig. 15, while the VQ's is in Fig. 16. The Example 2:We all understand that there is a possibility
overall SNR comparison of the mentioned methods is givéhat the transmission channels are not noise free. It causes
in Fig. 17. that the received bits might be wrong. Let's use the VQ to
According to the above results, the eBAM algorithm ndde an example, as shown in Fig. 18, the codebsiak =
only shows a better SNR, but also uses a smaller table si88, BK = 4. One bit error in every received tag vector
The detailed numerical data of CDR and SNR are listed mill make the decompressed picture totally unreadable. On the
Tables | and II. contrary, if the eBAM method is used, a very noisy picture is

Now we enlarge theBK to be 8, which meana = 64
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Fig. 10. eBAM method BK = 8, N' = 32).

Fig. 12. eBAM method BK = 8, N' = 128).

generated, which is barely readable, as shown in Fig. 19. This
is because the fault tolerance ability, or called self-adjusting, of
the eBAM. The remedy to get a clear picture without much loss We have shown the superior SNR and CDR of the eBAM
of the fidelity is to increase the dimension of the tag vectordata compression algorithm. The algorithm is suitable for
In other words, add extra bits to the tag vectors to enhance tregious kinds of data compression/decompression applications,
fault tolerance ability. A convincing demonstration is showthough we use the image compression as an illustration. It is
in Fig. 20. The fault tolerance ability of the eBAM method iswoted that the SNR mainly depends on the choiceVbfthe
tabulated in Table II. number of chosen feature vectors. In addition to the better

The relationship between the number of added bits and l8®R and SNR, the eBAM algorithm also shows the ability
SNR is shown in Fig. 21. Note that the increase of humb&r overcome the bit error problem caused in a lossy channel.
of bits of the tag vectors certainly enhance the fault tolerandde eBAM algorithm will be extended to colored pictures
ability and consequently the SNR. But on the other hand, thed grey-level pictures by using a multivalued eBAM (MV-
CDR will be drastically reduced. eBAM) [17] as the compression mechanism.

IV. CONCLUSION
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Fig. 13. VQ method BK = 8, codebook = 128).
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Fig. 14. VQ method BK = 8, codebook = 256).

APPENDIX
Theorem 1: Given a attraction radius; wherer < (n/2)

the maximal capacity for an eBAM to store pattern pairs is

2(n—2) 11
M<1+(n_7‘_1)'b4(7,_2). (11)
Proof: According to (2)
M
g =sgn B2 g 13 - pX (12)
i£h
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Fig. 15. The SNR of the eBAM method.
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Fig. 16. The SNR of the VQ method.
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Fig. 17. The SNR of the eBAM method versus the VQ method.

TABLE |
CoMmPARISON OF THESNR oF THE eBAM METHOD AND THE VQ

N or codebook 4 3 32 64 128 150 256 512
eBAM (BK = 1) | 64.56 | 66.52 | 70.33 | 73.67 | 79.22 | 83.29 | 100.0 | 100.0
eBAM (BK = 8) | 61.67 | 62.94 | 65.47 { 67.13 | 70.83 | 72.91 | 100.0 | 100.0
VQ (BN =4) 59.43 | 59.43 | 59.43 | 59.43 | 66.04 | 67.70 | 69.38 | 72.90
VQ (BK = 38) 59.43 | 59.43 | 59.43 1 63.90 | 65.99 | 67.18 | 67.31 | 69.47

We only discuss th@ part of evolution equations without
any loss of robustness here. The power of the signal, i.e., the
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Fig. 18. The VQ method result with one-bit error

(BE = 4, codebook = 128). Fig. 20. The eBAM method result with one-bit errdd ik = 4, N/ = 128,
added bits= 4).

SNR

bits added

e Fig. 21. The relationship of SNR and the added bR = 4, N’ = 128).

- - TABLE 1|

) E e e - THE FAULT TOLERANCE ABILITY OF THE eBAM METHOD (BK = 4N’ = 128)
Fig. 19. The eBAM method result with one-bit errds [ = 4, N’ = 128, bits added 0 1 9 3 7
no added bits).
) CDR 2.000 | 1.778 | 1.600 | 1.455 | 1.333
SNR 51.58 | 54.96 | 55.40 | 54.72 | 61.67

first term in the right hand side of (12) is

S = (b2))? = proan), (13) . o _
where all of thev;,7 # h are the identical random variables.

On the other side, the noise term of (12) can be deemed\gs can takey; to compute the mean and the variance
(M — 1) random variables,

X Pr(vy =+1-"7277) = ($)rtopt (14)
U1 —yljbX X7 PT(Ul -—_1- bn—2—2k) — (%)n—lcg—l (15)
V2 =125 2 )

wherek > r + 1 andk is the Hamming distance betweén
and X;. According to (15), we certainly get

vy =yn;b NV E E{v;} =0. (16)
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Then, the variance can be derived as The STNR,.;, must be greater than one in order to recall
the correct pattern pair. Hence,

n—1

E[W?] =2 Z pAn=2h=2)(Lyn=1om=1 STNRuyin >1
k=rt1 B2 > AM = 1) b (10T = (107
- c— meYm ~ - Sphr. - bt
—9 Z p2(m—2k 1)(%) o, ~AM-1) 0 [(1+(n—1)-077)
k=r+1 bt (1 +7r- b_4)]
where m = n; 1 =4(M - 1)(n —r—1)- b1
-9 (%)me(m—l) Z (b—4)k1(m—k)clr€n' (17) IS 4(M — 1)(71 —_r = ]_) . b4(7’_2)
= (n—2)
k=rtl M <1 —+ 2 = Mmax- (20)

(n — = 1) . par=2)

However, the above equation will not have a close form
solution mainly because of the summation term. We can try to
find the upper bound of this summation term. leet= b=+
to make the equations easy to read. Then, the summation P =~
term in (17) can be rewritten as shown at the bottom of the
page. exp |-

Hence, (17) can be derived as

Theorem 2: The bit-error probability of the eBAM is

1 (M _ 1)1/22(—(n/2)+1)(n —r = 1)1/2

Vo ) pla—2r)
b(8—41‘)

20M —1)- 26742 . (n —p — 1)

. (21)

Proof: 4, in (12) can be assumed to bel without loss
E[vf] < 2(%)771(,2("1—1)[(1 + 5—4)m —(1+ (,—4)7‘] of robustness. Then, the error occurs when the argument in the
—9 (%)(n—l)bQ(n—Q)[(l FhH D (14 phy] sgn function of (12) turns out to greater than 0. That is,

(18) P, =Prob(V > 0),
M
The above upper bound is the maximal noise power, called V==b""7 4 Z yip - b5
Npax- Then the minimal signal-to-noise-rati8 TNRy;,) of i#h
the eBAM is shown in (19) at the bottom of the page. V==b"" .

m

m r
E: akCZLIE:akC’T_E:akC’T
k=0 k=0

k=r41
" m!
=0ran -3 o
B e " o | m(im—1)---(r+1)-7!
=(1+a) kzzo (m =k m—k—=1)(r+1=&) - (r = B k!
m - : m m—1 r+1 7!
=(1+a) —Z“k'<m_k> <m—k—1>"'<r+1—k>'(r—k)!-k!

<(1—|—a)m—z ak . O

k=0
—(1+a)" = (1+a)

S b(?n—4r)
(M = )N (M = 1) - 2(5) DO B[(1 4 54D = (11 b4y
b4 .on

- 4M —1) b4 [(14+b=H=D) — (14 b4 (19)

S TNRm in — 1
2
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Again we assume the summation term in the above equatigsi
is the sum of M — 1) identical random variables as describedle]
in the proof of Theorem 1. We also take as an example
to compute the expectation value and the variance of eadi
random variable. According to (16) and (18)

(8]
Var {v1} = E{v]} — E*{v1} [9]
ov, =/ Var{v}
L\(n— - 4\ (n— _avr [10]
< \/2(5)(71 DR2n=2)[(1 4 p—4)(n=1) _ (1 4h=4)]
~ 2~/ Sy =1y T ”
=200/ DF0) (=B (g — 1)1/, 2]

Since the overall noise is the sum of(A/ — 1) identical
random variables, e.gsy; we surely have the following [13]
conclusion:

Var{v} =(M — 1) - Var{v, } [14]

oy = (M — 1), [15]

Henceforth, the error of the recall process occurs wh?ﬂs]
v > b"7%" in (12). Basing upon the central limit theorem,

we should have the following result when— oo, M — 7]

) bn—?r
P. =Prob(V > 0) = Prob(v > ") = Q< - )
(22)
where

Q(t)

/ o~/ gy
t

L o (/2)

%

1= 3~
= =

Hence, the bit-error probability’. is defined as
1 (M -1)/2260/240(n — ¢ — 1)1/2
o pa—27)
b(8—41‘)
- exp T2(M —1)- 207+ (n —r — 1)

P, =

(23)
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