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Data Compression by the Recursive Algorithm of
Exponential Bidirectional Associative Memory

Chua-Chin Wang and Chang-Rong Tsai

Abstract—A novel data compression algorithm utilizing the
histogram and the high-capacity exponential bidirectional as-
sociative memory (eBAM) is presented. Since eBAM has been
proved to possess high capacity and fault tolerance, it is suitable
to be utilized in the data compression using the table-lookup
scheme. The histogram approach is employed to extract the
feature vectors in the given data. The result of the simulation of
the proposed algorithm turns out to be better than the traditional
methods.

Index Terms—Bidirectional associative memory (BAM), expo-
nential BAM, histogram, SNR, vector quantization (VQ).

I. INTRODUCTION

T HE objective of data compression—a high compression
rate using a small amount of space with low distortion of

the decompressed data—has long been a problem. Since the
advent of multimedia systems, data compression has been an
unresolved problem mainly due to the exchange of tremen-
dous amounts of image, video, speech, and text data. Many
approaches have been proposed for data compression, e.g.,
vector quantization (VQ), JPEG [14], MPEG [3], [10], CD-I
[12], and DVI [11]. As to real-time video data compression,
Frost [2] and Huang [4], respectively, have detailed their
methods. Most of the approaches are prone to generate errors
if the transmission channels are not flawless. Besides, neural
networks have also been involved in the data compression
application. The effect, however, might not be outstanding
[9]. The viewpoint of the prior neural network applications for
the data compression is that the researchers deemed the data
compression and decompression are learning tasks [1], [8],
[13]. Even though this viewpoint is correct in some cases, the
current neural networks cannot have satisfactory performance.

Fig. 1 is a prototype of a transmission channel for data
compression; the number or the dimension of the vectors
traveling in the transmission channel must be less than that of
the input and output vectors. Both the compression processor
and decompression processor are two associative memories
which are encoded with desired feature vectors of given
data. Hence, how to encode the feature vectors efficiently
becomes an important issue. Thanks to the evolution concept
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of associative memories [5], [7], [15], it is feasible to apply the
similar methodology to retrieve the vector table in data com-
pression/decompression. We therefore develop the prototype
of the exponential bidirectional associative memory (eBAM)
algorithm integrated with histogram approach to examine the
feasibility.

The eBAM has been proposed by Jenget al. [5] and
proved with high capacity by Wang [15], [16]. Its intrinsic
high capacity encourages the encoding of pattern pairs for
feature vectors of given data. The compression processor
and the decompression processor are symmetric and have
neurons attached to the transmission channel andneurons
on the I/P and O/P, respectively, while . We will
use the histogram method to extract the feature vectors of
the given data, and then encode these feature vectors in the
eBAM’s. Thus, the data compression and decompression can
be achieved. The most attractive reason for using the eBAM
as the processors is that this associative memory has a high
capacity to encode vector pairs and fault tolerance ability
to retrieve the encoded vector pairs [15], even in a lossy
transmission channel.

In this paper, we adopt the histogram approach to build
a so-called ordered histogram feature vectors table and then
use the eBAM to compress/decompress the given data. De-
tailed simulations have been conducted showing impressive
performance.

II. FRAMEWORK OF THE eBAM ALGORITHM

Our data compression/decompression algorithm can be di-
vided into two parts: the histogram preprocessor and the
eBAM recursive table lookup. The former one is dedicated
to extract the feature vectors of the given data, while the later
is designed to compress the feature vectors into tag vectors
which will be transmitted in the channel, and decompress the
tag vectors at the receiving end by recursive table lookup.

A. Ordered Histogram

Although the histogram approach is a well known skill,
we have to redefine it more clearly so as to integrate with
the eBAM recursive algorithm. Suppose we are given a set
of original data vectors, where

. Note that the components of the data
vectors are bipolar, because the neurons are assumed to be
in either on or off state. Some of these vectors are identical,
which are deemed as vectors repeatedly showing up in the
entire set. The goal of the histogram approach is to extract all
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Fig. 1. A prototype of the data compression/decompression system.

of the unique vectors of and count the number of repetition
of each unique vector. Thus, a histogram mappingcan be
defined as

where

where is called the histogram table, is the size of the
table, and for . According to the above
definition, the operator partitions the into groups, while
each group is represented by a vectorand a count number
associated with this group

count no. of

where

For the sake of simplicity, we use to denote in
the following text.

Repetitions of a vector imply the degree of the importance of
this vector. In other words, repetitions imply feature vectors. In
the procedure of data compression/decompression, we always
vow to keep feature vectors as much as possible such that
the distortion of the decompressed data will be as small as
possible. Therefore, it is necessary to sort the above histogram
table according to the count associated to each vector in

where

where and .
The entire operation of the operator is listed as the

following pseudo codes:

We call the is the ordered histogram table of data set
the ordered feature vectors.

Therefore, we have an ordered histogram in which the
feature vectors of the given data are listed according to their
individual importance, i.e., the number of the repetitions.

B. eBAM algorithm

Before the discussion of the whole data compres-
sion/decompression system, it is necessary to discuss the
eBAM and its characteristics. Suppose we are given
bipolar pattern pairs to be encoded, which are

(1)

where

and . Instead of using Kosko’s
approach [6], we use the following evolution equations in the
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recall process of the eBAM

(2)

where and are input retrieval pattern vectors. is a
positive number, while “ ” represents the inner product
operator. and are the th bits of and the ,
respectively, and and are for and the , respectively.
The reasons for using an exponential scheme are to enlarge the
attraction radius of every stored pattern pair and to augment the
desired pattern in the recall reverberation process. The energy
function of this network is defined as

(3)

The above energy function places every stored pattern pair
in its own local minimum on the entire energy surface if
is large enough [15]. During the recall reverberation process,
the and vectors will recall each other recursively and
alternatively until the reaches a final value which
is supposed to be a local minimum. The convergence of this
process has been proved in [5] and [15].

We have computed the capacity of the exponential BAM
[15]

(4)

where is assumed to the without any loss of
generality.

In the above equation, the given pattern, say, to recall
the corresponding pattern pair is exactly the same as one of
the stored ’s so that the corresponding will be recalled.
Suppose we initialize the eBAM with an input pattern,
which is bits away from the nearest pattern where

. (If then will be closer to than
.) And this input pattern, can still recall the nearest

pattern, and its corresponding pattern . In Appendix I,
we have proved the following conclusion.

Theorem 1: Given a attraction radius, where
the maximal capacity for an eBAM to store pattern pairs is

(5)

Theorem 2: The bit-error probability of the eBAM is

(6)

C. Ordered Histogram Combined with eBAM

Since an ordered histogram can be extracted from any given
data, it is convenient to utilize the histogram to proceed the
data compression. The basic idea is to encode the important
feature vectors of the histogram table in the eBAM, because
eBAM is proved to possess high capacity and low bit-error
probability. The details of the eBAM recursive algorithm,
hence, can be tabulated as follows.

1) Select the first important feature vectors from the
ordered histogram as the vectors to be encoded and
transmitted, where . Hence, determines the
compression rate and the quality of the decompressed
data. If the is large, then the compression rate will
be low but the quality of the decompressed data will be
high, and vice versa.

2) Generate a uniquetag vector for each selected feature
vector randomly. The dimension of the tag vectors,
must be smaller than that of the feature vectors,. If
not so, then the data compression would be meaningless.
Note that the dimension of the tag vectors depends on

. In order to represent vectors, then the dimension
of the tag vectors must be at least . For instance,
if first 64 feature vectors are chosen, then at least 64 tag
vectors are needed. That implies the dimension of the
tag vectors is .

3) Then the vector pairs encoded in eBAM, i.e., the fea-
ture vectors table, are transmitted. Every vector of the
given data is present to the compression eBAM such
that a corresponding tag vector will be recalled and
transmitted.

4) The decompression eBAM receives a tag vector and then
recall a corresponding feature vector.

Basically, the eBAM data compression/decompression
method utilizes the characteristics of the eBAM, high capacity,
low error probability, and fault tolerance, which can be
concluded from Theorems 1 and 2. In order to show its
performance, several indexes for multimedia and image
processing are defined as follows and then compared with
other methods.

Compression Rate:The ratio of the size of the original data
to the size of the compressed data.

(7)

Signal-to-Noise Ratio:The similarity of the decompressed
data relative to the original data

(8)

where denotes the original vectors, is the decompressed
vector, and 255 is a heuristic constant. Note that the de-
nominator of the argument of the is the average
of the difference, or called error, between the original data
set and the decompressed data given by the eBAM method.
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Fig. 2. The original picture.

Hence, if it means a perfect recall of the original
data after the compression–decompression. Then, the SNR is
approaching 100. Otherwise, if the average of the difference is
large, the SNR will be dramatically reduced. It is a nice index
to compare the performance of compression/decompression
methods.

III. SIMULATION ANALYSIS

In order to show the performance of the eBAM recursive
compression/decompression algorithm, we have done several
simulations which will be compared with a standard VQ
algorithm [8], [9]. In the following, we have conducted a
series of simulation to illustrate the effect of the eBAM
algorithm.

Example 1: A 256 256 original picture is shown in
Fig. 2. Since the picture occupies a lot of memory, it is
necessary to quantize the picture into small blocks which then
will be compressed and transmitted. We define as the
number of pixels of one side of the small blocks andas the
number of pixels of one side of the picture. Thus, the CDR and
SNR defined, respectively, in (7) and (8) can be rewritten as

(9)

(10)

Note that the function of the codebook in the standard
VQ method is similar to that of the feature vectors table.
The size of the codebook and the vector table will affect

Fig. 3. eBAM method (BK = 4; N 0
= 8).

Fig. 4. eBAM method (BK = 4; N 0
= 32).

the performance of data compression. Figs. 3–6 show the
results of using eBAM algorithm with , ,

, respectively. In these pictures, the chosen block size is
which means the dimension of the feature vectors

and the data vectors are 16. Thus, and .
In our simulations, is chosen. It is clear that
when the number of the chosen feature vectors increases,
the quality of the picture improves. However, Figs. 7 and 8
show a disappointing results of using the VQ method even
though the size of the code book is as large as 128 and 256,
respectively.
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Fig. 5. eBAM method (BK = 4; N 0
= 64).

Fig. 6. eBAM method (BK = 4; N 0
= 128).

Now we enlarge the to be 8, which means
and repeat the same procedures. The results of the eBAM
method are shown in Figs. 9–12. In contrast, the results of
the VQ method are shown in Figs. 13 and 14. For the sake
of clarity, the SNR of the eBAM methods are graphically
illustrated in Fig. 15, while the VQ’s is in Fig. 16. The
overall SNR comparison of the mentioned methods is given
in Fig. 17.

According to the above results, the eBAM algorithm not
only shows a better SNR, but also uses a smaller table size.
The detailed numerical data of CDR and SNR are listed in
Tables I and II.

Fig. 7. VQ method (BK = 4; codebook = 128).

Fig. 8. VQ method (BK = 4; codebook = 256).

Note that if the eBAM approach is used, then the overall
is 150. That is the reason why there are no results for the

cases and . In short, the eBAM data
compression/decompression has been proved to be feasible
and powerful.

Example 2: We all understand that there is a possibility
that the transmission channels are not noise free. It causes
that the received bits might be wrong. Let’s use the VQ to
be an example, as shown in Fig. 18, the codebook

. One bit error in every received tag vector
will make the decompressed picture totally unreadable. On the
contrary, if the eBAM method is used, a very noisy picture is
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Fig. 9. eBAM method (BK = 8; N 0
= 8).

Fig. 10. eBAM method (BK = 8; N 0
= 32).

generated, which is barely readable, as shown in Fig. 19. This
is because the fault tolerance ability, or called self-adjusting, of
the eBAM. The remedy to get a clear picture without much loss
of the fidelity is to increase the dimension of the tag vectors.
In other words, add extra bits to the tag vectors to enhance the
fault tolerance ability. A convincing demonstration is shown
in Fig. 20. The fault tolerance ability of the eBAM method is
tabulated in Table II.

The relationship between the number of added bits and the
SNR is shown in Fig. 21. Note that the increase of number
of bits of the tag vectors certainly enhance the fault tolerance
ability and consequently the SNR. But on the other hand, the
CDR will be drastically reduced.

Fig. 11. eBAM method (BK = 8; N 0
= 64).

Fig. 12. eBAM method (BK = 8; N 0
= 128).

IV. CONCLUSION

We have shown the superior SNR and CDR of the eBAM
data compression algorithm. The algorithm is suitable for
various kinds of data compression/decompression applications,
though we use the image compression as an illustration. It is
noted that the SNR mainly depends on the choice ofthe
number of chosen feature vectors. In addition to the better
CDR and SNR, the eBAM algorithm also shows the ability
to overcome the bit error problem caused in a lossy channel.
The eBAM algorithm will be extended to colored pictures
and grey-level pictures by using a multivalued eBAM (MV-
eBAM) [17] as the compression mechanism.
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Fig. 13. VQ method (BK = 8; codebook = 128).

Fig. 14. VQ method (BK = 8; codebook = 256).

APPENDIX

Theorem 1: Given a attraction radius, where
the maximal capacity for an eBAM to store pattern pairs is

(11)

Proof: According to (2)

(12)

Fig. 15. The SNR of the eBAM method.

Fig. 16. The SNR of the VQ method.

Fig. 17. The SNR of the eBAM method versus the VQ method.

TABLE I
COMPARISON OF THESNR OF THE eBAM METHOD AND THE VQ

We only discuss the part of evolution equations without
any loss of robustness here. The power of the signal, i.e., the
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Fig. 18. The VQ method result with one-bit error
(BK = 4; codebook = 128).

Fig. 19. The eBAM method result with one-bit error (BK = 4; N 0 = 128,
no added bits).

first term in the right hand side of (12) is

(13)

On the other side, the noise term of (12) can be deemed as
random variables,

...

Fig. 20. The eBAM method result with one-bit error (BK = 4; N 0 = 128,
added bits= 4).

Fig. 21. The relationship of SNR and the added bits (BK = 4;N 0 = 128).

TABLE II
THE FAULT TOLERANCE ABILITY OF THE eBAM METHOD (BK = 4N 0 = 128)

where all of the are the identical random variables.
We can take to compute the mean and the variance

(14)

(15)

where and is the Hamming distance between
and . According to (15), we certainly get

(16)
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Then, the variance can be derived as

(17)

However, the above equation will not have a close form

solution mainly because of the summation term. We can try to

find the upper bound of this summation term. Let

to make the equations easy to read. Then, the summation

term in (17) can be rewritten as shown at the bottom of the

page.

Hence, (17) can be derived as

(18)

The above upper bound is the maximal noise power, called

. Then the minimal signal-to-noise-ratio of

the eBAM is shown in (19) at the bottom of the page.

The must be greater than one in order to recall
the correct pattern pair. Hence,

(20)

Theorem 2: The bit-error probability of the eBAM is

(21)

Proof: in (12) can be assumed to be1 without loss
of robustness. Then, the error occurs when the argument in the

function of (12) turns out to greater than 0. That is,

(19)
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Again we assume the summation term in the above equation
is the sum of identical random variables as described
in the proof of Theorem 1. We also take as an example
to compute the expectation value and the variance of each
random variable. According to (16) and (18)

Since the overall noise is the sum of identical
random variables, e.g., we surely have the following
conclusion:

Henceforth, the error of the recall process occurs when
in (12). Basing upon the central limit theorem,

we should have the following result when

(22)

where

Hence, the bit-error probability is defined as

(23)
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