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ABSTRACT

The power consumption of a finite state machine (FSM) can be reduced if the count of bit change
activity during the state transition is decreased by appropriate arrangement of the states. In this work,
we propose a greedy pair grouping of states for FSM and analyze the expected performance of this algorithm.
The probability that a state will appear is computed by using the state transition probability matrix and
the initial input signal. A greedy pairwise grouping algorithm is then presented in which the states are
pairwisely grouped together by the magnitude of their individual terminal probability. The bit representation
of the state assignment is carried out in the reversed order of the sequence of the grouping. The systematic
characteristics of the greedy grouping results in transition reduction compared to the classical method.
Furthermore, an upper bound of the expected reduction ratio of our method is discovered. Results using
this greedy pairwise state grouping method show that the performance of the reduction of transition activity
can be pre-estimated before circuits are implemented in hardware.
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I. Introduction

Recently, there has been a surge of interest in low-
power devices and design techniques mainly due to the
boom in personal wireless communication tools. While
many papers have been published describing power-
saving skills for use in digital systems (Chandrakasan
et al., 1992; Chen er al., 1994; Horowitz et al., 1994),
a common measure for power consumption has been
widely employed, i.e., transitions density (Najm, 1993).
This is due to the average dynamic power dissipation
by a CMOS gate:

Fuve= %Vges %lzdclrmd Jowitch »
where C,,q is the output capacitance, and fiwen is the
switching frequency or the average number of gate
transitions per unit of time. Hence, we certainly can
reduce the power consumption by designing a digital
circuit that lowers the transition activity but still achieves
the identical logic function (Chandrakasan et al., 1992;
Ercegovac and Lang, 1994; Horowitz et al., 1994).
This transition reduction is independent of the power
supply and processing technologies (Olson and Kang,
1994). We attempt to reduce the state transition activity
for finite state machines (FSM) by optimizing state

assignment. This optimization is based on the tran-
sition probability on each edge between one state and
another state.

However, most prior assignment algorithms are
quite complicated and converge slowly (Hachtel er al_,
1994; Murgai ef al., 1994; Olson and Kang, 1994). We
propose a greedy state pair grouping algorithm to achieve
reduction of transition activity (Wang and Fan, 1995).
After computing the terminal probability of each state,
the states are re-ordered according to their individual
terminal probabilities. The basic idea is that in each
grouping, scanning the state with the largest probability
will enable us to find one of its next possible states
with the largest probability to combine with, except in
a few special situations, e.g., when the grouping causes
a “cut point” for the rest of the states in the state
diagram.

Although the simulation results of the greedy state
grouping reveal satisfactory performance, the expected
best reduction ratio still remains unsolved. Regarding
this problem, we also analyze the reduction ratio of our
method in contrast to the classical or random assign-
ment method. An interesting result is that we can
predict the average reduction ratio without actual
realization of the FSM.

In this paper, we will first briefly introduce
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definitions of the terms used in our work and the
derivation of the terminal probability of each
state. Then, the greedy pair grouping of states for an
FSM will be discussed. Some simulation results
will be presented to verify the performance of our
approach.

II.Greed¥ Pairwise Grouping
Algorithm (GPGA)

The FSM can be represented by a transition matrix.
Assume there are n states in an FSM of which the states
are G={S%, S, ..., $;—1}. The probability that state ;
will go to state ; is Fy(x), where x is the input to the
FSM, and

1, if x=don’t care
Ffx)={ F{0), if x=0
1-PF,0), if x=1

Note that the default value of Pi;(0) and P;;(1)=1-P;(0)
is 0.5. Hence, the transition matrix for € can be written
as

Fyo Py Fu-1y0
A= By Py
Fyn-1y  Bn-1) Fn-ty(m-1)

limy_,.,A* exits as long as any eigenvalue of A is not
—1. When the initial state vector, P, is given, we
can easily derive the terminal probability for each
state:

Puaie = (Jim A+ By €y

where each component of Py, is the terminal prob-
ability of a state S;, Vi=0, ..., (n—-1).

Hence, the transition probability for each tran-
sition edge (te) from state i to state j is defined as

Pie(Sis S)=Pable(S0)* Pifx)+ Poapie( S Pi(y),  (2)
where x, ye {0, 1, don’t care}, i#j.

1. Greedy Pairwise Grouping by Terminal
Probability

(1)Find the edge with the largest transition
probability, say P.(S; S, i#/. Group S;, S;
into a new state, . The terminal probability
of this new state is Pgapie(®p)=Psiape(S))+

P stable(Sj)-

(2) Temporarily exclude those states which are
grouped already. Repeat Steps (1) and (2) until
all states are traversed once. If the number of
states is odd, then the last one is grouped by
itself.

(3) Thus, the original state diagram, G, is trans-
formed into a new state graph, G'={oy, o, ...,
oy_1}. If n'=2, go to the bit assignment proce-
dure. If n'=[2], the grouping at this stage is
successful. Go to Step (1) to start a new stage
of state grouping. Otherwise, there is at least
one cut point in the graph G’. Restart at Step
(1) by choosing the edge with the second largest
probability.

(4) Compute the transition probability for each edge
in the new graph, which will be utilized for the
next stage of grouping. According to the defi-
nition shown in Fig. 1, the probability of the
transition edge of By and By, P.(Bo, B1). is
computed as

Ptc( ﬁﬂ 3 ﬁl )= aég a;ﬂl Pstable(ai) * R‘.c(al ’ aj)
i i

+ o:jEEﬂI ﬂ'.!én Psmb[e(aj) . Pu(aj ) (x!) ’(3)

where f3;’s are the nodes after the grouping while
o;’s are the current stage nodes.

Note that the necessary condition for an optimal
bit assignment is that n’ <[2|. The cut point is defined
as a state node which is an articulation point of the
graph. The cut point basically divides the states into
at least two sets. If one state in one set wishes to travel
to another state in another set, it has to go through this
cut point. When the grouping causes the occurrence
of any cut point, this is very disadvantageous to the

Fig. 1. The transition edge probability of By and B;, Pw(Bo, B1)-
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optimal state assignment,
2. Bit Assignment

By using the previous procedure, a 2-node graph
will finally be generated. Clearly, the greedy pairwise
grouping forms a full binary tree. That is, a node in
the current graph containg one or two nodes from the
previous graph. We then use the following bit assign-
ment at each stage.

(1) Start from the last 2-node graph, and backtrack
to the original state diagram. Assume the last
2-node graph consists of two node, ¥ and Z. If
P abic{ V)2 Pyab1e(Z), then Sy=0 and Sz=1, and vice
versa.

(2)Each node at the current stage contains one or
two nodes from the previous stage. That is, the
parent node has either one child or two children.
If there is only one child, add one “0” to the bit
representation. If there are two children, add “0”
to the bit representation of the node with larger
terminal probability, and add “1” to the other
node.

(3)Repeat Step (2) until the original states are all
assigned.

3. Estimation of the Reduction Ratio

code(S;))=b,,_1bu_...bg indicates the bit repres-
entation of state S;, where b; is either 0 or 1. TBG(S;,
S;) is for the number of changed bits per clock cycle
of the greedy grouping method, TBN(S;, S;) is for the
classical method, and TBW(S;, S;) is for the worst case
of the classical method. In addition to the above
definitions, the probability that any state bit will be
changed is assumed to be p. The default value of p
is 0.5.

greedy pair grouping: Referring to Fig. 2 which

shows the encoding result of GPGA for any FSM with
n=3, the leaf nodes of the binary tree contain the codes
for the states. Note that the X in the tree indicates the
don’t care. Since 0 and 1 are dual in Boolean algebra,
we can assume robustly that the state with the largest
terminal probability has the code 00...0. The optimal
result occurs when Pup1e(S)ZPstabie(S), i</, That is,
there exists no cut point in the graph of the FSM., Then,
the optimal result of GPGA must be as follows:

code(Sy)=0=(000),

code(S1)=1=(001),

code(S7)=7=(111),.

classical method: However, the conventional method
for state assignment of an FSM results in a different
binary tree, as shown in Fig. 3, with n=3. Thus, the
worst case of the state assignment should be generated
following a guideline; i.e., the codes of two states
which reside at the ends of the edge with largest tran-
sition probability are complementary. The probability
of the transition from S; to S; is computed by

Pe(S; s S) = P S) % BAD) . @)
where I is the binary input vector. For example, n=3,
and P.(Sg, S;) is the largest. Then, code(Sy)=0=000
while code(S;)=7=111.

4. Expectation of Transition Activity

GPGA: Assume that the number of bits for each state

Fig. 2. The encoding result of GPGA for any FSM with n=3.

Fig. 3. The ;:Jossible assignment of the classical method for any FSM
with n=3.
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is n while the number of states is m. The expectation
for the number of transitions for a state S; can be
described by the following equation:

Es= 3RS, S)TBG(S,.S), 0Sj<m=1.  (5)

Thus, the expectation value of the overall transition
activity is a summation of the above expectations:

m-—

Exwedy = z

i=0 J

1 m—1 ,
Es = ;‘,ﬂ j; B(S;,8)*TBG(S;,S)),

0gjsm—1. (6)

Hence, given any FSM to which is assigned states
according the GPGA, the expectation value of the
transitions can be predicted based on Eq. (6).

Classical approach: In the traditional classical ap-
proach for state assignment, the number of transitions
for state §; to state S;can be 0, 1, ..., or n. Hence, it
is easy to derive that the expectation value for the
classical approach is

TBN(S,-,Sj)=kZ_:Ok-Cfp"(1—p)”""=np, @)
Thus, the expectation value of the overall transitions
is derived as

m=1 ,
Ejassica = Ei) EI. EdS:. 5= TBG(S;.S),

0<gjsm—1. (8)

As for the worst case assignment of the classical
method, the adjacent states at leaf nodes in Fig. 3 have
to be mutually complementary. That is, code(S;)=
code (S;, 1), i=0, 2, 4, .... Then, TBW(S,, S;,;)=n while
TBW(S;, S;), j#i+1 can be assumed to be less than or
equal to n—1. Finally, we conclude that the expectation
value of the worst case assignment of the classical
method is )

Z, L RS, 5)TBW(S,.S),

m—1

E,

worst —

0<j<m—1. &)

Upper bounds of reduction ratio: Based upon the
above analysis, several upper bounds for transition
reduction for the greedy pair grouping algorithm can
be found.

(1) Average reduction ratio:

E ossica — E
Rave =- clnsztfal___greedy «100% .

classical

(2) Upper bound of reduction ratio:
Ewnrst_Egreedy 00%
Rupper-_ EWOTSt ' l :

(3) Absolute upper bound:

-1
Raps = n

L4 100%.

Note that Ry, occurs in an ideal situation. That
is, every two states in an FSM are only one bit away
from each other.

lll. Simulation and Analysis

Example 1: In order to verify the reduction of tran-
sition activities which is possible using our greedy
pairwise state grouping algorithm, we will utilize an
FSM to illustrate how the algorithm works and what
the result is. Referring to Fig. 4, which shows a 9-
state FSM, we derived its terminal probability for each
state by the given initial vector, [1 0000 0 0 0 0],
and the transition matrix formed from the state dia-
gram. The terminal probability for each state is

P4=0.0361 Pp=0.0181 Pc=0.3795
Pp=0.0241 Pz=0.0241 P;=0.2892
P=0.0120 Py=0.1440 P,=0.0723.

Fig. 4. 9-state FSM.
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Since Pe>Pp>Py>P>Py>Pp=Pp>Pg>Pg, we can then
start to group the states pairwisely. At the first stage,
we can get the 5-node graph shown in Fig. 5. Then,
we can further group the nodes into a 3-node graph as
shown in Fig. 6. Next, we will get a 2-node graph as
shown in Fig. 7. Now, we backtrack through the
grouping stages and process the bit assignment for each
state using our algorithm to get the final state assign-
ment of the FSM:

Bi=

Fig. 5. Grouping 9 nodes into 5 nodes.

Fig. 6. Grouping 5 nodes into 3 nodes.

Fig. 7. Grouping 3 nodes into 2 nodes.

Note that the bit length for each state is the same
as that of the classical logic design method. We can
use CADENCE and HSPICE to simulate these two logic
circuits for the same finite state machine. Figure 8
shows the logic circuit of our method, and Fig. 9 is
the logic circuit of the classical method. Thus, in Fig.
10, given a series of input signal, we find that the total
number of transitions of the greedy pairwise state
grouping method is 27. Using the same input sequence,
the total number of transitions of the classical method
is 44, as shown in Fig. 11. A comparison of the power

-prl =y

x‘—_\. ) - a2

D e
—— elk——-_-_’

: '_‘—. .
: ————
= = R —
=

—-pr-a—

alk - a—

Fig. 9. The logic circuit of the classical method.
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Fig. 10. The simulation results obtained by the greedy method. Fig. 12. A comparison of the power dissipation between the greedy

method and classical method.
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{ WMMLH “ H J-m;ﬂ [Lm-t L g while the reduction of transition activity is on average
Lt 33%. An interesting phenomena is that the higher

5 the clock frequency is, the greater the power savings
! Jaad | are.
0
v Example 2: In order to verify our analysis of the
vy transition reduction obtained by GPGA, we have
e conducted another series of simulations. Referring
i to Fig. 13, which is another 7-state FSM with only
P one input signal, the final state assignment is as fol-
v lows:
i e e 0l
: T e v code(S)=000

Fig. 11. The simulation results obtained by the classical method. zgg:g‘g;ggé

code(Sg)=011

code(SF)=100
consumption between these two circuits is shown in code(Sp)=101
Fig. 12. Hence, the reduction ratio of transition code(S4)=110.
activity is 38.6%. As for total power consumption, we
have conducted a series of simulations to illustrate The theoretical results based on the conclusion of

the impact to the total power savi'ng. _Referring 1o our analysis are Egreedy=1.199900 and Eqjyesicar=
Table 1, the average power reduction is about 17%  1.499850. The reduction ratio is 20%. The upper

Table 1. Simulation Results Obtained by CADENCE and HSPICE

I/P Sequence Classical Method Greedy Method Reduction Ratio
input data clock power # of power # of power transition
frequency dissipation transitions dissipation transitions dissipation activity
(Hz) (nW) (nW) (%) (%)
Seq-1 8.13 95.699 44 84.196 27 11.60 38.60
Seq-2 8.13 92.424 -~ 83 88.794 51 8.90 38.55
Seq-3 8.26 88.961 42 68.140 36 23.40 14.29
Seq-4 10.30 107.730 109 88.794 65 17.00 40.36
Seq-5 10.30 104.020 91 81.504 63 22.50 30.70
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Fig. 13. 7-state FSM with only one input signal.

bound of the reduction ratio is 25.71% given
E\or=1.866500. Five different test input signal se-
quences were utilized to test the performance. The
results are shown in Table 2, in which the average
transitionis 1.20310, which s close to Egreeqy=1.199900.

For FSM with multiple input signals, we have
built a 7-state 2-input FSM for illustration purposes,
as shown in Fig. 14. The final state assignmnet by
GPGA is

code(S¢)=000
code(S,)=001
code(Sg)=010
code(Ss)=011
code(Sy)=100
code(Sp)=101
code(Sg)=110.

The theoretical results based on the conclusion of

Fig. 14, 7-state FSM with 2-input signals.

our analysis are Egreqy=1.117950 and Epica
=1.500000. The reduction ratio is 21.37%. The upper
bound of the reduction ratio is 35.43% given
E\orst=1.826800. Another five different testinput signal
sequences were also used to test the performance. The
results are shown in Table 3, in which the average
transition is 1.17544, which is close to Egreeay=1.11790.

Example 3: In order to verify the performance of
GPGA, we have encoded the states of several MCNC
benchmark FSMs. The results are listed in Table 4.
The average reduction ratio of power relative to the
classical method is 12.60%. For each entry in the last
column of Table 4, we conducted a series of simulations
in which five different input vector sequences were fed
into the benchmark circuit to evaluate the performance.

Table 2. The Simulation Results for the Expectation Value for a 7-Satte FSM with 1-Input Signal

1-bit the number of transitions Expectation value of the
input steps number of transitions
data b2 bl b0 Total ( Egreedy)

seq-1 196 23 66 148 237 1.2092

seq-2 196 23 75 136 234 1.1939

seq-3 196 25 66 143 234 1.1939

seq-4 196 23 65 143 231 1.1785

seq-5 196 24 73 146 243 1.2398

average - - - - - 1.2031
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Table 3. The Simulation Results for the Expectation Value for a 7-State FSM with 2-Input Signal

2-bit the number of transitions Expectation value of the
input steps number of transitions
data b2 bl b0 Total (Egreedy)
seq-1 196 39 56 138 233 1.1887
5eq-2 196 39 55 130 224 1.1429
seq-3 196 40 57 130 227 1.1582
seq-4 196 41 63 132 236 1.2040
seq-5 196 35 58 139 232 1.1836
average - - - -~ - 1.1754
Table 4. Benchmark Simulations
Benchmark Classical Method Greedy Method Reduction Ratio
# of average # of average power # of average # of average power transitions power
transistors transitions (uW) transistors transitions (uW) (%) (%)
bbtas.kiss2 200 36.00 49.83 208 29.40 38.95 18.33 21.83
dk17.kiss2 262 48.80 84.19 268 33.80 49.17 30.74 41.56
dk27 kiss2 196 81.00 61.16 174 55.80 49.28 31.11 19.42
dk512 kiss2 394 54.00 72.86 334 46.20 68.04 14.40 6.62
$27.kiss2 304 30.00 43.62 266 29.00 41.47 3.33 4.92
$386.kiss2 464 44.00 75.55 480 42.20 79.73 4.09 -5.53
donfile.kiss2 308 39.00 92.45 348 36.40 93.21 6.67 -0.82

Benchmark : dk512.kiss2

States: 15 Input: 1

D-ff:

Table 5. A Benchmark Circuit with Different Input Sequences

4

Classical Method (394)

Greedy Method (334)

Reduction Ratio

* spice # of transitions power(uW) # of transitions power (uW) transitions (%) power (%)
dk512%v10 22+12+11+14=59 87.98 15+7+5+22=49 76.48 16.95 13.07
dk512*v11 16+14+15+8=53 66.30 15+14+1+16=46 75.22 13.21 -11.86
dk512%v12 15+14+1449=52 73.25 14+14+1+14=43 65.07 17.31 11.17
dk512*v13 16+16+16+5=53 59.22 16+16+1+16=49 68.95 7.55 -16.43
dk512*v14 16+14+15+8=53 77.57 14+14+1+15=44 54.48 16.98 29.43
average 54.00 72.86 46.20 68.04 14.40 6.62

( ): the number of transistors

Table 6. Simulation Results of Estimated Transition Reduction

Expection Value classical Average Worst Case Greedy Average Average Reduction Ratio (%)

Est. Sim. Est. Sim. Est. Sim. Est. Sim. Error
bbtas.kiss2 1.2872 1.4400 1.5000 - 1.0601 1.1760 17.6800 18.3300 3.55
dk17.kiss2 1.5840 1.9200 1.6971 - 1.2988 1.3520 18.0100 30.7400 41.41
dk27 kiss2 1.4964 3.2400 1.5209 - 1.0698 2.2320 28.5100 31.1100 8.36
dk512.kiss2 1.9998 2.1600 2.1508 - 1.7111 1.8480 14.4339 14.4000 0.24
$27 kiss2 1.3087 1.2000 1.5104 - 1.2777 1.1600 2.3700 4.0900 42.05

The result for dk512 is shown in Table 5, which gives

an average reduction ratio of 6.62% by HSPICE.

In
addition, Table 6 shows the prediction of our estimation
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Table 7. The Results of Comparison between GPGA and Reencoded

Benchmark Re-encoded GPGA

transitions (%) power (%) transitions (%) power (%)
§27.kiss2 1.11 -47.96 3.33 4.92
§386.kiss2 2.9 -2.94 4.09 -5.53
donfile.kiss2 5.12 -11.6 6.67 -0.82

tion is 19.12%, which is slightly better than the 20.94%
of Najm’s method (Najm, 1993). The result is very
appealing and shows the correctness of our prediction
of the reduction ratio.

Finally, compared with the famous re-encoded
method for FSM (Hachtel et al., 1994), our proposed
GPGA algorithm still performs better even in the
three most difficult benchmark circuits, 527, 5386, and
donfile. As shown in Table 7, the proposed GPGA
provides on average -0.48% power reduction while the
re-encoded method provides on average -20.83% power
reduction.

IV. Conclusion

According to the simulation results, our approach
indeed can drastically reduce the transition activity
and, consequently, the total power for an FSM. In
contrast with prior state assignment methods, our
approach is much more systematic. We have also
presented a quick method to identify whether there is
any cut point in the grouping process which might cause
non-optimal bit representation of state assignment. We
have also proposed a method to precisely predict the
performance of GPGA even before the actual circuit
is built for a given FSM. The simulation results in-
dicates the correctness of our analysis.
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