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An Analysis of High-Capacity Discrete Exponential BAM
Chua-Chin Wang and Hon-Son Don

Abstract— An exponential bidirectional associative memory
(eBAM) using an exponential encoding scheme is discussed. It
has higher capacity for pattern pair storage than the conventional
BAM’s. A new energy function is defined. The associative memory
takes advantage of the exponential nonlinearity in the evolution
equations such that the signal-noise-ratio (SNR) is significantly
increased. The energy of the exponential BAM decreases as the
recall process proceeds, ensuring the stability of the system. The
increase of SNR consequently enhances the capacity of the BAM.
The capacity of the exponential BAM is estimated.

I. INTRODUCTION

OSKO [7], [8] proposed a two-level nonlinear network,
bidirectional associative memory (BAM), which extends
a one-directional process to a two-directional process. One
beneficial characteristic of the BAM is its ability to recall
stored pattern pairs in the presence of noise. However, re-
searchers have discovered a major shortcoming of the BAM,
i.e., its limited capacity of stored pattern pairs. In order
to overcome this shortcoming, researchers have spent very
much efforts to improve the storage capacity of the BAM.
Wang et al. [13] proposed two alternatives, multiple training
and dummy augmentation to enhance BAM’s ability to find
the global minimum. Wang’s approaches enhance the recall
probability of pattern pairs in a case-by-case way, but the
generalization of these methods is still questionable. Haines
and Hecht-Nielsen proposed a nonhomogeneous BAM [5];
Simpson proposed an intraconnected BAM and a high-order
autocorrelator [11]; and Tai er al. [12] proposed a high-
order BAM. All of these works pay a price of increasing the
complexity of the network and do not get much increase of the
storage of the pattern pairs. In these works, the basic idea to
improve the recall probability is to enlarge the attraction radius
of a stored pattern pair, or enhance the desired pattern power
and reduce the unwanted patterns’ influence. Chiueh and
Goodman [3] proposed an exponential Hopfield associative
memory motivated by the MOS transistor’s exponential drain
current dependence on the gate voltage in the subthreshold
region such that the VLSI implementation of an exponential
function is feasible. Based upon the concept of Chiueh’s
exponential Hopfield associative memory, Jeng et al. proposed
one kind of exponential BAM [6]. However, the energy
function proposed in [6] cannot guarantee that every stored
pattern pair will have a local minimum on the energy surface.
Moreover, there is no capacity analysis given in [6].
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In this paper, we adopt the exponential form and combine it
with the BAM structure in order to enhance the SNR and,
consequently, increase the capacity of the BAM. We also
propose a new energy function of the BAM system based on
the exponential form. The capacity of this exponential BAM
(eBAM) is estimated. The simulation result is much more
appealing than the previous works.

II. FRAMEWORK OF HIGH-CAPACITY EXPONENTIAL BAM

A. Evolution Equations

Suppose we are given N training sample pairs, which are

{(A17 B1)1 (A2a B?)', e 7(A1\" BN)} (1)
where
A; = (a1, aig, -, Gin),
Bi - (bi11 b127" '7bip)'

Let X; and Y; be the bipolar mode of the training pattern
pairs, A; and B, respectively. That is, X; € {—1, 1}" and
Y; € {-1, 1}*. Instead of using Kosko’s approach [7], which
is

(X—-M-=Y)

(X' = MT «Y)

where M = Zfil XTY;, we use the following evolution
equations in the recall process of the eBAM

1 it YN yab¥ X >0

- ’ = - 2

Yk {—1, if SN yib¥X <0 @
1, it N zpb Y >0

Ty = ‘ Zﬁvl v s 3)
-1, if 0, zpb T <0

where b is a positive number, b > 1, “.” represents the inner
product operator, z; and x;; are the kth bits of X and X,
respectively, and y and y;. are for Y and Y, respectively.
The reasons for using an exponential scheme are to enlarge the
attraction radius of every stored pattern pair and to augment
the desired pattern in the recall reverberation process.
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B. Energy Function and Stability

Since every stored pattern pair should produce a local min-
imum on the energy surface, the energy function is intuitively
defined as

E(X,Y)=

N N
LD DUE @
i=1 i=1

Assume E(X',Y) is the energy of next state in which Y
stays the same as in the previous state. Hence, AE, =
— YN bXeX (=N bYX), Assume the ith pair is the
target of the recall process. Let d,; be the Hamming distance
between X and X;, d,; the Hamming distance between the
X' and X;. Hence the AE can be modified to be

Il

N N
AE; _Z log, (b"~2e) + ZIOgb (b"2)
=1 i=1

N =n
=30 (@ — z)zak ®)

i=1 k=1

I

Note that log is used, which is a monotonic function. From
the recall process shown by (3) and (5), the AE, < 0 is
ensured. Because (3) makes (3, — zx )z always nonnegative
such that AE! < 0, and

N N
AE, <0= —Zl()gb (b"~2e) < ‘Zl‘)gb (b7 ~%4)

i=1 i=1

N N
= _z beX' < _Z ng-X
S AB <o

Obviously, it also holds for the other case: E(X,Y’) <
E(X,Y) if the pair is heading for a stored pair, (X;, ;).
Since the F(X, Y') is bounded by —N(b" +bP) < E(z, y) <
—N(b~"+b7?) for all X and Y, the energy of the exponential
BAM will converge to a stable local minimum.

C. Analysis of Capacity of Exponential BAM

We adopt the SNR approach [3] to compute the capacity of
the exponential BAM. Equation (2) can be rewritten as

N
Yk = sgn (Z yikbx""“)

=1

N
=sgn | b yni + Z yib¥ ¥
p ith
(6)
where the Y}, is assumed to be the desired pattern, and yy, is
its kth bit. The first term in the above equation corresponds
to the signal, the second term is the noise. Hence the power
of the signal is

S = b*". : )

The second term is actually a sum of N — 1 independent iden-
tically distributed random variables. Therefore, the variance
of the second term is N — 1 times the variance of a single
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random variable. Let

_ yl]b\ WX

vy = YoV

=ynbv .

Since all of the v;’s have the same property, we select v;
as the sample. It is trivial to derive the following probability
functions for v;

n—1

Pl'('Ul — bn~272k) — (%) O;L—l (8)
1 n—1

Pr(v; = —b""272%) = (§> cp! ©

where k is the Hamming distance between X and X;. The
mean of the noise term is obviously zero. Then the variance
can be derived as

n—1

n—1
E[v}] =2 pHn=2k2) (%) et

k=0

= ZZ p2(m—2k- 1)( ) Cyt, wherem=n-—1
_ (_) b2(7n 1) Z 4)k m—k) Ck
k=0

2(%)mb‘2(b2 +b)m
L2 4+ b2y

;)

Hence we can conclude the following result for the signal-
noise-ratio of the exponential BAM, i.e., the capacity of the
exponential BAM,

1

2n—1b4

SNRepaM = oy =y T H b0 T

(10)

However, since the BAM is a bidirectional reverberation
process, it will be reasonable to use » = min (n, p) instead of
n in the above result. Hence the SNR should be rewritten as

2r—1b4

SNRepaM = AN -+ 1

an

where 7 = min (n, p).
By using the same SNR approach, we can analyze the SNR
of Kosko’s BAM [8]. The derivation is given in the Appendix.
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Fig. 1. Capacity of different types of BAM.

n2

2N - 1)(3)" " Thls(n - 2k — 22077
2

RO
n

SNRpam =

3

SN 12
Similarly, the above result will be rewritten as
SNRpam = TNT_—U, where 7 = min (n, p).  (13)

This result corresponds to the estimation in Kosko’s work [7],
[8], which states that the upper bound of the BAM’s capacity
is less than the minimum of the dimensionalities.

Comparing the results shown in (10) and (12), we can tell
how significant an increase of capacity the exponential BAM
has. If b is sufficiently big and N is large, the denominator
of (10) approaches 2N

211—1 4

SNRcpaM R N

b> 1.

(14)

From the above result, if we want a good recall probability,
i.e., a high SNR, we have to pay the price of increasing either
the dimensionality n or base b, or decreasing the number
N of stored pattern pairs. The result meets what we expect
intuitively.

III. SIMULATION ANALYSIS

Amari and Maginu [1] performed the capacity analysis for
the first-order autocorrelator, which has capacity

n

—_—. 15
2logn + log logn (1)

Clst-auta =
Baldi and Venkatesh [2] did the same analysis for higher-order
autocorrelator, which has capacity

n9-1

CHOauto = (16)

2nllogn’

As for the capacity of the BAM, Haines and Hecht-Nielsen
[5] estimated it to be
r

Cpam = r = min(n, p). a7

2logr’
Tai et al. [12] proposed a high-order BAM. They did not
estimate or prove the possible capacity of the high-order BAM
except claiming a better recall probability. However, we still
can reasonably expect that the capacity of the high-order BAM
will be about that of the high-order autocorrelator, because 1)
the BAM is intrinsically a variety of the autocorrelator, so
the high-order BAM is certainly a variety of the high-order
autocorrelator, and 2) if n is large, the capacity shown in (15)
is about the same as that in (17).

Haines and Hecht-Nielsen [5] proposed another variety of
BAM, i.e., nonhomogeneous BAM. They proved and enlarged
the capacity to be

’I"L2

0.68) ———=;.
( )(10g2 n+4)?2

(18)

Onon-homo =
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Fig. 2. The capacity of the exponential BAM.

All of the above analyses are plotted in Fig. 1 and Fig. 2.
In Fig. 1, the previous works are plotted together to show the
comparison, while in Fig. 2, the capacities of the proposed
exponential BAM and Kosko’s BAM are drawn. Because the
numerical values of the exponential BAM is relatively much
larger than those of the conventional BAM’s, a log scale is
used so that the contrast is clear. In Fig. 2, the b is e and
N = n. From the figures, we can see the great improvement of
the proposed exponential BAM in contrast to those previous
works.

1IV. CONCLUSION

The exponential BAM provides a significantly higher ca-
pacity of ‘storage for pattern pairs. It utilizes an exponential
scheme to magnify the SNR. The proposed energy function
ensures that every stored pattern pair is located in a local
minimum of the energy surface. The monotonic decrease of
the energy of the exponential BAM during the recall process
ensures its convergence to a local minimum, while maintaining
the stability of the system. The capacity of the exponential
BAM is estimated, so the size of the exponential BAM can be
predetermined by the demand of capacity.

APPENDIX
According to Kosko’s formulation [7]
N
Y=X-M=(X-XVW+Y (X -XI)Y; (19)
i#h
=nY, + Y (X XY
i#h

(20)

It is natural to assume that the stored pattern pairs are drawn
from {—1, 1}" with uniform probability. Hence, the first term
corresponds to the signal which has the power n2. The second
term, the noise, has a zero mean and variance as follows

]—22:: 2(k + 1)]? ( >n_1c,';—1
ki::m 2k—1]?<1>mc,;", m=n—1.

Assume

m
fl@,y) =Y Yy oy = (@ + )"
k=0

h(y) =

Zym 2k~ lcm
Then, we can get

uh'(y) = oo

Z(m—2k—1

k

(yh'(y)) —Z(m 2k —

)2 m—2k— 2Cm

If y = 1, then
(R(1) = (m—2k-1)*Cy.
k

It is trivial to derive (yh'(y))’ and substitute in y = 1. The
result is

(K1) =2(m+1)2m" 1 =p. 2" L,
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Hence the signal-to-noise ratio, i.e., the capacity, of Kosko’s

BAM is
’

2 n

n
SNRpam = — = :
AN —1)(2)" Tan-1n 2N 1)

@n
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